
Published By
EPRA Publishing

CC License

Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
 Mrs.M.Josephin Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr.Said I.Shalaby, MD,Ph.D.
 Professor & Vice President

Tropical Medicine,
Hepatology & Gastroenterology, NRC,
Academy of Scientific Research and Technology,
Cairo, Egypt.

2. Dr. Mussie T. Tessema,
Associate Professor,
Department of Business Administration,
Winona State University, MN,
United States of America,

3. Dr. Mengsteab Tesfayohannes,
Associate Professor,
Department of Management,
Sigmund Weis School of Business,
Susquehanna University,
Selinsgrove, PENN,
 United States of America,

4. Dr. Ahmed Sebihi
Associate Professor
Islamic Culture and Social Sciences (ICSS),
Department of General Education (DGE),
Gulf Medical University (GMU),
UAE.

5. Dr. Anne Maduka,
Assistant Professor,
Department of Economics,
Anambra State University,
Igbariam Campus,
Nigeria.

6. Dr. D.K. Awasthi, M.SC., Ph.D.
Associate Professor
Department of Chemistry,
Sri J.N.P.G. College,
Charbagh, Lucknow,
Uttar Pradesh. India

7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
Assistant Professor,
School of Social Science,
University of Jammu,
Jammu, Jammu & Kashmir, India.

8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,

Institute for Studies in Industrial Development,
An ICSSR Research Institute,
New Delhi- 110070, India.

9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
Associate Professor & HOD
Department of Biochemistry,
Dolphin (PG) Institute of Biomedical & Natural
Sciences,

 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor : 6.093

Research &
Development

EPRA International Journal of

(IJRD)

Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 4, Issue:5, May 2019

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |161 |

TO IDENTIFY EARLY ASPECTS IN DESIGN
PHASE USING GOAL DRIVEN CLUSTERING

APPROACH IN ASPECT ORIENTED
DEVELOPMENT

Aashima Anand
Maharishi Ved Vyas Engineering College, Kurukshetra University

Mohinder Singh
Maharishi Ved Vyas Engineering College, Kurukshetra University

ABSTRACT
Aspect-Oriented Programming (AOP) is a paradigm that offers a novel approach to improve the modularity of system by

allowing the separation of crosscutting concerns (CCC). The concerns identified in earlier stages are known to be early aspects.

Concerns in requirement level augment the concern in design phase and then to implementation phase and so on. The main motive of

this proposed work is to identify the goals and early aspects from class & method relationship in architectural design phase. To get

the efficient work, a goal driven approach is used to model the requirements with the goals and a clustering technique is used to

cluster those goals in pair wise manner and find the similarity degree. The identified aspects are further refactored and transformed

into AOP language.

 INDEX TERMS— Aspect oriented Programming (AOP), Cross cutting concerns (CCC), Goal-Driven Approach.

I. INTRODUCTION

In software engineering, breaking down a bulky large
Isoftware system into minor distinct parts is a necessary way
of managing the complexity and evolution of systems. Such a

decomposition results in a ―separation of concerns‖. AOP
[1] better aim to advance the modularity of the software
system by identifying the aspects in early stages. Aspect-
oriented Software Development (AOSD) targets the
implementation phase of software development life cycle:
developers find and capture aspects primarily in source code.
But aspects can be resolved much earlier in the life cycle, such
as during requirements phase and architectural design phase
[2][3]. In the early phases of the software development life
cycle, the early aspects are concerns that cross the central
modules of an artifact resultant from the principle

of separation of concerns. Due to the increase in complexity
and obvious change in requirements, the aim of paradigm is to
enhance the development of software; it supports implicit
quality attributes such as reusability, ease of change and

understandability of software system. Here, ―Early‖ refers to
happen before execution in the development phase. An
aspect is known to be a concern that can crosscut requirements
artifacts in requirements phase and architecture design
artifacts in design phase. Identifying early aspects from the
software life cycle helps to improve modularity in the
requirement phase and design phase. In [4], a tool is created to
identify CCC using clustering technique which measures the
similarities between different requirements and also the
hierarchical algorithm is used to cluster those requirements.
Concerns denoted by high priority terms are identified during
starting clustering phase, while others denoted by less priority
terms identified in following phases. The generated clusters

SJIF Impact Factor: 6.093 Volume: 4 | Issue: 5 | May| 2019 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Peer Reviewed Journal

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |162 |

are further measured using metrics which measure the
cohesion between clusters, physical dispersion across
requirements and also the interaction between them. Search
Based Technique and Differential File Comparison
Algorithm (DIFF) are combined to analyze and identify CCC
in Agent Framework [5].

A concept of software hybrid re-engineering can also
be applied to the system code at early stages to reduce cost
and moderate risk of system maintenance [6].To identify
aspects in refactoring process, aspect mining and
identification has to be conducted and then afterwards aspect
implementation is conducted. The approach describes the
CCC in Agent Framework and how to clean the framework
by removing concerns through refactoring process. To avoid
scattering and tangling, design and coding must be well
organized which can be achieved by Aspect-oriented (AO)
approach [7]. In addition, detecting CCC’s at one stage offers
benefits downstream. Awareness of requirements-level
concerns helps the developer plan a better system, and
knowing architecture-level aspects automates more robust
implementation. Early aspects can span development
activities, and many identify their way into the code level as
traditional implementation aspects.

By increasing the modularity, the impact on system
changes when modified can be reduced [8]. More concretely,
detecting early aspects through phases can:

(1) Increase the stability and reliability of requirements
and architecture designs with implementation as well as with
each other. (2) Provide a validation, logic and traceability for
aspects. (3) Help confirm that CCC in a system’s domain is
encapsulated as aspects at the time of execution. In AOP, the
main problem is crosscutting concern (CCC) which hinders
the evolution and modularization of program. AO approach
provides a key for CCC problems in Object-oriented approach.
The design started from architectural level to get
comprehensive models. To ensure clean modal, conversion
process from design phase into implementation (code and
maintenance) phase in development becomes an important
part in the discussion. Early aspects are concerns that intersect
the software’s problem domain, with the possibility for a
dynamic influence on queries of scoping, arranging, listing
and design. Evaluating early aspects advances early stage
decision making, and assist suggest subjective benefits in the
whole software development life cycle. However, exploration
of early aspects is difficult because subjective are often
unclear about the concepts involved, and may use different
terminologies to direct their concerns. The aspects are
scattered and tangled across the system which hinder the
evaluation of system. Scattering is when same code is spread
all through many program modules. Its implementation is not
modular hence affect the multiple modules [9]. Tangling is
when more than one concern is implemented in same module,
hence making it difficult to understand AspectU [10] is an
aspect oriented language which augments the use case model
by introducing pointcuts, joinpoints and advice. The
interaction of the CC behavior to the principal use-case model
specified by joinpoint model which is defined by following
constructs in AspectU: (1) joinpoints are any points where
event occurs in model, (2) set of joinpoints are defined by

pointcut. (3) The behavior is affected by advices at the
joinpoints. Concerns within a use case model are modularized
by AspectU.

II. ASPECT ORIENTED CONCEPT

AOP is divided into two parts: (1) Base code- The language
element that defines the basic functionalities of the system is
stored in this code. It includes the core definition for the
sequence of the implementation. (2) Aspect code- The aspect
that encapsulates concern is stored in this code. It can add
extra functionalities to the core base code and also control the
flow [11]. The concept of AOP defines the mechanism of the
concern handling. Join point is any point in program where an
event occurs such as method execution, exception handling,
field access etc. Pointcut is a collection of joinpoints, which
defines where exactly an advice should be applied. At a
particular join point, an action is taken before or after the
implementation of joinpoint, which is represented by advice.
Weaving is a process to link aspect with other app at compile
time. Basically, this refers to the connection between the base
code and aspect code. Fig. 1 depicts the example of AOP
AspectJ Hello Program, it includes the joinpoint. Whenever an
event occurs,in our example, calling greeting method,
sayHello method and instantiating an object are described as
joinpoint. This is described as the base code describing the
core functionalities of the system.

Fig.1 Aspect oriented Programming
In AOP, alter in the core code can lead to the scattering

of the join-points across the system. [12] developed an
approach to alleviate the burden caused by fragility. The
automated technique is based on harnessing arbitrarily deep
structural commonalities. The approach deals with the
problems to rejuvenate broken pointcuts.

Fig.2 illustrates the same example of Hello Program. A
pointcut callsayHello() is defined which calls the greeting
method. An advice is also used before and after the trigger of
pointcut. Advice before with Before Call message executes
before and advice after with After Call message executes after
the execution of pointcut. AORE

[13] detect candidate aspects by demonstrating the
relationships between requirements and concerns in the form
of matrix based on the scale of negative or positive impact of
each aspect on others.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |163 |

Fig. 2 Advice in a program

Conflicts with stakeholders are solved by prioritizing
concerns. The requirements specification is then revised based
on the new priorities. Early-AIM adopts natural language. An
automatic approach is defined to restructure the identified
concerns into aspects. Approach used the Association Rule
Mining techniques to automatically suggest the appropriate
refactoring based on the identified aspect and Hidden Markov
Model to additionally restructure the program to preserve the
behavior of the system and also to lower the burden of
developer [14].

III. SYSTEM MODELLING & DESIGN
To implement the proposed work, a simulation tool is

designed in a popular NetBeans IDE. With the help of
ArgUML tool, architecture of requirements is designed. The
design is exported in xmi (xml metadata intermediate) format,
which will be taken as input in our simulation tool. The tool
reads all the interactions and relationship among the goals
from the xmi file. After triggering the Discover Aspect button,
the algorithm implemented on the provided input and the
results will be displayed on the Log.

Fig.4 Simulation Tool

Transform to AOP transform the identified aspects into AOP
language construct. Fig. 4 denotes the design of the simulation
tool. This work also uses another tool ArgoUML. Interaction
between Goals and Use Cases helps in providing vital details
for managing, identifying and justifying software
requirements. Use Cases are derived based on goal interaction.
In our approach, goals are identified based on their interaction
with use case. They are clustered using the clustering
technique and then the similarity is checked across the
clustered goals. Clustered goals with similarity degree above
the defined parameter are further processed to identify the
aspects. The identified aspects are transformed into aspect-
oriented language construct. Fig. 5 illustrates the flow of
proposed work in which goals are clustered together to find
early aspects. If the clustered goals have similarity degree
(common concerns), it is further processed for aspect
identification otherwise it will be directed out of the process.

Fig. 5 Flow Chart of Aspect Identification

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |164 |

A. Goal Driven Approach
Goal Structure represents the goals to understand the various
facets of functional and non-functional requirement as well
[15]. In goal driven approach [16],

goals are used to represent the motive of the requirement. For
ex- Friend plans his birthday party time and location by asking
his parent. In a requirement statement, a verb in the sentence

can be used to depict the goal. Here, party represents the goal. In
goal driven use case (GDUC) approach, the use cases are viewed
as process to achieve particular goals. In GDUC Model [17],
goal identification and formulation is done. After the
identification, GDUC diagram is designed in which each use
case is observed as a procedure that can be linked with the goal
to be achieved.

B. Clustering Techniques
To overcome the amount of data items and to group

similar data items, clustering is done [18]. Hierarchical
clustering is used in the proposed approach, as it moves in
stepwise manner. In this technique each goal is represented as
a separate cluster itself and merges themselves in a pair.
Because a cluster is itself combining in a pair and forming a
big cluster, it is also following agglomerative method. Fig. 6
depicts the clustering of goals with common concerns
captured. Similarity is measured between the clustered goals
and based on the similarity degree, the aspects are identified.
Similarity denotes the degree of correspondence among goals
across all the characteristics used in the analysis.

Fig. 6 Goals with crosscutting
C. AOP Implementation

AOP helps in achieving the modularity by improving the
separation of concerns [19]. It consists of pointcut and aspects
are encapsulated into a single unit. AOP language can also use
advices which are triggered just before or after the joinpoint. It
also includes types of advices which are executed based on the
condition of pointcut. The identified aspects are transformed
based on static name based pointcut. As it is the initial stage of
the life cycle, the static pointcut is valid for the aspects.

D. Proposed Algorithm
The algorithm is designed to identify the goals from the design
phase by the mean of xmi file and perform hierarchical
clustering technique to identify aspects.
Input: Goal file with concerned use case.
Output: Early Aspect Discovery.
Initialize:

I. Identify the goals from the requirement to be
clustered.

II. Cluster the goals in a pairwise manner (Gi, Gj). Gi is
not equals to Gj.

III. Identify the similarity between the goal Gi and goal
Gj.

IV. If the similarity degree between Gi and Gj is zero or
null, return to Step VII.

V. If the similarity degree between Gi and Gj is not
equal to zero, set a co-efficient value (m) to filter out
the required goals.

VI. Identify the early aspects (An).

VII. End.

E. Requirement & Goals
Consider a scenario of Drawing Editor with the following
Requirements:

 Artist can start, open document editor to create sheet and
document.

 Artist can create, open sheet.

 Artist can create, open document.

 Document consists of groups of drawing object and
geometric object.

 Drawing object includes text figure.

 Geometric object includes circle figure.

 Geometric object includes rectangle figure.

Based on these requirements, the goals are set. Requirements are
the process to achieve the goals. For joinpoints which is
triggered in the case of concerns occurred. The aspect identified
in design phase is transformed into AOP language construct. The
identified\
Ex. Artist can create a sheet. Here, sheet is goal which
can be achieved by a process (requirement) create. Fig. 7 depicts
the goal-driven use case modelling diagram of

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |165 |

Acronym Goal Name

GGD Graphical
Document Editor

GDT Document

GSH Sheet

GGR Group

GDO Drawing Object

GGO Geometric Object

GTX Text Figure

GCR Circle

GRT Rectangle

Table 1: Acronyms for goals name
All the details are taken from the GDUC and the above
presented acronym table, a class-method relation diagram is
designed in ArgoUML tool to represent the goal-requirement
interactions. Based on the relation diagram, a goal requirement
interaction class diagram is designed as shown in Fig. 8.

Fig.8 Class Diagram representing Goal Driven

Approach.

The above diagram depicts the class diagram of the drawing
system in which each goal is interacted with the other goal.
Further the information of the design phase is wrapped up in
xmi file. The simulation tool will identify the goals and then
execute hierarchical based clustering on their interaction
distance to find the similarity and also to identify the aspects.

IV.RESULTS & DISCUSSION

In drawing system, the main objective is to find the
early aspect. A goal driven approach is used to identify the
aspects [20]. In the presented simulation tool, the goals with
similarity degree are identified and highlighted as red. The
parametric value (m) is taken different values based on high-
priority and low-priority goals and concerns identification.
Fig.9 illustrates the concerns that are identified from the goals
by assuming high priority aspect identification. Aspects
identified as high-priority may highly affect the modularity of
the system. Shown in results, a high value of parameter is
taken i.e. 0.9. The value ranges from 0.0 to 1.0. As shown in
figure, each goal clusters are clustered with other goals in a
pair. Similarity degree is measured among the clustered goal.
The clusters having degree greater or equal to set parameter is
highlighted and also the aspects that crosscut their
functionality is identified and displayed in the results. For
example- The concerns create and open are similar in goals
GDT & GSH. Also, the concerns create and delete are similar
in goals GGR & GSH which hinders the modularity of the
system. These concerns should be further refactored, so as to
improve separation of concern and modularity.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |166 |

Fig. 9 Identified aspects

A. Refactoring & AOP Transformation

The identified aspects are restructured and
transformed into AOP language. By refactoring, the
modularity can be improved. Whenever the concerns that
crosscut the functionality of other goals are identified, a
special method or function must be executed to prevent the
system tangling. A language named AspectJ, which is
based on AOP, is used. The concept of AOP (AspectJ) is
discussed in section 2. Fig 10 illustrates the AOP language
construct, which has a pointcut named ptName. The
pointcut triggered the call method. Restructuring is done to
make pointcut more dynamic, the expression G* represents
the dynamic goal with the identified aspects. Advices
before and after are execute with the pointcut. The output
of the AOP construct is extracted in a text file.

Fig.10 AOP Construct

According to the parameters taken based on the priority,
the coefficient value of m is taken different values to get
the results. At different value of m, the goals with
priorities are clustered to identify the aspects. The results
are taken by setting the value of (1) m > 0.9 and (2) m=0.5

Goal

1

Goal

2

Aspect

Identified (An)
No. of

Aspects

Setting coefficient value (m) > 0.9

GDT GSH
create, open 2

GGR GSH
create, delete 2

Setting coefficient value (m) = 0.5

GGD GDT open 1

GGD GSH open 1

GDT GGR create 1

GDT GDO create 1

GGR GGO create 1

Table 2 Results showing identified
concern

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|______________

Volume: 4 | Issue: 5 | May| 2019 | www.eprajournals.com |167 |

Table 2 results in the goals interaction and identified

aspects from the design phase. Each goal is clustered with
other goal. The aspects are identified from the goal cluster.
For example- In goal clustering of GGR and GSH, the
identified aspects are create and delete and also the number of
aspects identified is represented in the table. Previously in [21]
the aspects are identified in requirement phase by clustering
the goals at large scale. Our approach augments the work by
identifying the aspects in architectural design phase and also
to transform those aspects into AOP language construct to
avoid CCC and to advance the principal of separation of
concerns.

V.CONCLUSION & FUTURE WORK
Aspect-oriented programming provides a mechanism to avoid
code tangling and scattering problems caused by crosscutting
concerns and also to modularize the concerns. Concerns found
in early stages can also affects the further stages of software
development life cycle. To effectively support the work it is
imperious to offer an approach which will reduce the burden
of the developer by identifying and structuring base concerns
at early stages which provides benefit at the later stages. This
paper proposed an approach for identifying the concerns in the
early stages of software lifecycle such as architectural design
phase and translating them into AOP language. The identified
aspects are extracted from the design phase of goals and
requirement relationship. Our approach addresses two issues:
(1) Identifying the early aspects, (2) restructure them into AOP
construct. This work concluded that the aspects can identified
in architectural design phase and also can be weaved
separating those concerns in AOP construct using AspectJ.

There are many interesting challenges left for future work.

Our future work include: (1) Automatic refactoring process of

identified concerns. (2) Additional restructuring of the

software by removing bad smell in identified concerns.

REFERENCES
[1] G. Kiczales, Gregor, and Erik Hilsdale. "Aspect-oriented

programming." ACM SIGSOFT Software Engineering Notes. Vol.
26. No. 5. ACM, 2001.

[2] J. Mylopoulos, L. Chung, and B. Nixon, ―Representing and using

nonfunctional requirements: A process-oriented approach,‖
IEEETrans. Softw. Eng., vol. 18, no. 6, pp. 483–497, Jun. 1992.

[3] A. van Lamsweerde, R. Darimont, and E. Leitier,

―Managing conflicts in goal-driven requirements

engineering,‖ IEEE Trans. Softw. Eng., vol. 24, no. 11, pp. 908–
926, Nov. 1998.

[4] C. Duan and J. Cleland-Huang, ―A clustering technique for early

detection of dominant and recessive cross- cutting concerns,‖ in Early
Aspects at ICSE: Workshops in Aspect-Oriented Requirements
Engineering and Architecture Design 2007., May 2007

[5] Nugroho, Lukito Edi, Widyawan Widyawan, and Ahmad Ashari.
"Crosscutting Concerns Refactoring In Agent Framework." The 2nd
International Conference on

Information Technology, Computer and Electrical Engineering
(ICITACEE 2015). 2015.

[6] Tarar, Sandhya, and Ela Kumar. "Design Paradigm and Risk
Assessment of Hybrid Re-engineering with an approach for
development of Re-engineering Metrics." International Journal of
Software Engineering & Applications 3.1 (2012): 27.

[7] Sullivan, Kevin, et al. "Information hiding interfaces for aspect-
oriented design." ACM SIGSOFT Software Engineering Notes. Vol.
30. No. 5. ACM, 2005.

[8] Garcia, Alessandro, et al. "Modularizing design patterns with
aspects: a quantitative study." Transactions on Aspect-Oriented
Software Development I. Springer Berlin Heidelberg, 2006. 36-74.

[9] Kellens, Andy, Kim Mens, and Paolo Tonella. "A survey of automated
code-level aspect mining techniques." Transactions on aspect-oriented
software development IV. Springer Berlin Heidelberg, 2007. 143-
162.

[10] J. Sillito, C. Dutchyn, A. D. Eisenberg, and K. D. Volder,

―Use case level pointcuts,‖ in Proceedings of European Conference
on Object-Oriented Programming, 2004.

[11] Mens, Tom, and Tom Tourwé. "A survey of software refactoring."
IEEE Transactions on software engineering 30.2 (2004): 126-139.

[12] Kellens, Andy, Kim Mens, and Paolo Tonella. "A survey of automated
code-level aspect mining techniques." Transactions on aspect-oriented
software development IV. Springer Berlin Heidelberg, 2007. 143-
162.

[13] J. Sillito, C. Dutchyn, A. D. Eisenberg, and K. D. Volder,

―Use case level pointcuts,‖ in Proceedings of European Conference
on Object-Oriented Programming, 2004.

[14] Vidal, Santiago A., and Claudia A. Marcos. "Toward automated
refactoring of crosscutting concerns into aspects." Journal of Systems
and Software 86.6 (2013): 1482-1497.

[15] C. Rolland, C. Souveyet, and C. Achour, ―Guiding goal modeling

using scenarios,‖ IEEE Transactions on Software Engineering, vol.
24, no. 12, pp. 1055–1071, December 1998.

[16] Jonathan Lee, Kuo-Hsun Hsu, "GEA: A Goal-Driven Approach to
Discovering Early Aspects", Software Engineering IEEE
Transactions on, vol. 40, pp. 584-602, 2014, ISSN 0098-5589.

[17] J. Lee and N. Xue, ―Analyzing user requirements by use cases: A

goaldriven approach,‖ IEEE Software, vol. 16, no. 4, pp. 92–101,
July/August 1999.

[18] Duan, Chuan, and Jane Cleland-Huang. "A clustering technique for
early detection of dominant and recessive cross-cutting concerns."
Proceedings of the Early Aspects at ICSE: Workshops in Aspect-
Oriented Requirements Engineering and Architecture Design. IEEE
Computer Society, 2007.

[19] Coady, Yvonne, et al. "Using AspectC to improve the modularity of
path-specific customization in operating system code." ACM
SIGSOFT Software Engineering Notes. Vol. 26. No. 5. ACM,
2001.

[20] E. Baniassad, P. C. Clements, J. Ara_ujo, A. Moreira, A. Rashid,

and B. Tekinerdo_gan, ―Discovering early aspects,‖ IEEE
Softw., vol. 23, no. 1, pp. 61–70, Jan.-Feb. 2006

[21] A. Sampaio, A. Rashid, and P. Rayson, ―Early-aim: An

approachfor identifying aspects in requirements,‖ in Proc. 13th IEEE
Int.Conf. Requirements Eng., 2005, pp. 487– 488.

