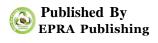
Chief Editor Dr. A. Singaraj, M.A., M.Phil., Ph.D. Editor Mrs.M.Josephin Immaculate Ruba **EDITORIAL ADVISORS** 1. Prof. Dr.Said I.Shalaby, MD,Ph.D. **Professor & Vice President Tropical Medicine**, Hepatology & Gastroenterology, NRC, Academy of Scientific Research and Technology, Cairo, Egypt. 2. Dr. Mussie T. Tessema, Associate Professor, **Department of Business Administration,** Winona State University, MN, United States of America, 3. Dr. Mengsteab Tesfayohannes, Associate Professor, Department of Management, Sigmund Weis School of Business, Susquehanna University, Selinsgrove, PENN, United States of America, 4. **Dr. Ahmed Sebihi Associate Professor** Islamic Culture and Social Sciences (ICSS), Department of General Education (DGE), Gulf Medical University (GMU), UAE. 5. Dr. Anne Maduka, Assistant Professor, **Department of Economics**, Anambra State University, Igbariam Campus, Nigeria. Dr. D.K. Awasthi, M.SC., Ph.D. 6. **Associate Professor Department of Chemistry**, Sri J.N.P.G. College, Charbagh, Lucknow, Uttar Pradesh. India 7. Dr. Tirtharaj Bhoi, M.A, Ph.D, Assistant Professor. School of Social Science, University of Jammu, Jammu, Jammu & Kashmir, India. 8. Dr. Pradeep Kumar Choudhury, Assistant Professor. Institute for Studies in Industrial Development, An ICSSR Research Institute, New Delhi- 110070, India. 9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET Associate Professor & HOD Department of Biochemistry. Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun, Uttarakhand, India. 10. Dr. C. Satapathy, Director, Amity Humanity Foundation, Amity Business School, Bhubaneswar, Orissa, India.


ISSN (Online): 2455-7838 SJIF Impact Factor : 6.093

EPRA International Journal of

Research & Development (IJRD)

Monthly Peer Reviewed & Indexed International Online Journal

Volume: 4, Issue:6, June 2019

 SJIF Impact Factor: 6.093
 Volume: 4 | Issue: 6 | June | 2019
 ISSN: 2455-7838(Online)

 EPRA International Journal of Research and Development (IJRD)
 Peer Reviewed Journal

COMPARATIVE STUDY ON SEISMIC PERFORMANC OF CFST BUILDINGS AND RCC BUILDINGS WITH AND WITHOUT BRACINGS USING ETABS SOFTWARE

Suresh Mahantappa Hunagund

PG Student, M.Tech, Dept of Civil Engineering, Ghousia College of Engineering, Ramanagaram

Mr. B R Narayana

Associate Professor, Dept of Civil Engineering, Ghousia College of Engineering, Ramanagaram

ABSTRACT

ETABS Software is used to analyse the G+25 Storied CFST and RCC Buildings with objective as. To determine the response of G+25 CFST Building under static and dynamic analysis. To determine the effect of story height on story displacement in G+25 CFST and RCC buildings. To determine the seismic performance of G+25 CFST building with steel bracings. Finally to compare the performance of G+25 CFST against equivalent RCC building in terms of time period, story displacement, drift and storey shear.

3D modelling for analysis of concrete filled steel tubes (CFST) column and reinforced concrete (RCC) frame multi-storey building having different storey height as well as "X" bracings are done using ETABS. There buildings is analysed by equivalent static analysis and response spectrum analysis. In india reinforced concrete structure are mostly used since this is the most convenient and economic system for low-rise buildings this type of structure is no longer economic because of increased dead load, less stiffness, span restriction and hazardous formwork. So the structural engineers are facing the challenge of striving for the most efficient and economical design solution.

KEYWORDS: ETABS, concrete filled steel tube(CFST), Equivalent static analysis, Response spectrum analysis, Storey displacement, Storey drift and storey shear

1. INTRODUCTION

Columns were hardly used from the Second World War till the initial 1970's; research had started a long time before, at the 20th century. Combining of these materials had a number of motivations; steel columns were frequent encased in concrete to give resistance against the fire, and the other hand concrete columns used with steel as a rebar providing. 'til the 1950s. It was common to use a wet mix of less strength concrete and neglect the role of the good class concrete to the strength of the column. In 1956 Faber and Steven proved that it had well in savings could be made by using good-class concrete and use these columns like a composite part. Method was discovered by stages from initially design ways for steel columns. Not centered on ultimate research on composite columns. In the era of 1980 many buildings were built by using of composite column.

2. LITERATURE REVIEW

Faizulla Z Shariff & Suma Devi et.al., (2015) ^[1]: In this journal, based on modern building extensive study is basically done for composite columns in which steel section is encased in concrete have been carried out by ETABS software using non-linear analysis is used for stimulation of steel concrete composite with steel reinforcement concrete structure of varying number of storeys such as G+14, G+19 and G+24 are considered for comparative study for the analysis. And structural parameters considered are axial force, base shear and bending moment is done and concluded that the composite structures are stronger for seismic analysis than RCC and finally composite structures shows better performance for these structural parameters.

Gayathri S et.al., (2017)^[2] : In this research for the seismic analysis G+9 building is considered for the comparison of RCC and CFST structures in zoneIII using ETABS software. In seismic analysis only for equivalent static method the results are considered for structural parameters such as Story displacement, Base shear, Time period is used for the analysis and finally concluded that composite structure under ESA method shows better performance than RCC under seismic loading. It can be considered as an alternative to conventional structures in seismic prone regions.

3. OBJECTIVES

- 1. To determine the behavior of G+25 building under Equivalent static method with comparison of RCC and CFST structures.
- 2. To determine the effect of storey height on storey displacement in G+25 CFST and RCC buildings.
- 3. To determine the seismic performance of G+25 CFST building with steel bracings.
- 4. Finally to compare the performance of G+25 CFST against equivalent RCC building in terms of time period, story displacement, drift and storey shear.

4. METHODOLOGY

- 3D modeling for analysis of concrete filled steel tubes (CFST) columns and reinforced Concrete (RCC) frame multistory building having different storey height as well as x bracings are done using ETABS.
- These buildings are analyzed by Equivalent Static Analysis and Response Spectrum Analysis.

BRACINGS

A braced frame a structural system is commonly used in structures subject to lateral loads such as wind and seismic pressure. The members in a braced frame are generally made of structural steel, which can work effectively both compression in tension and The beams and columns that form the frame carry vertical loads, and the bracing system carries the lateral loads. The positioning of braces, however, can be problematic as they can interfere with the design of the facade and the position of openings.

Fig-1: Exoskeleton Structure with Xbracing in London

5. TYPES OF BRACINGS 5.1 Single diagonals

Trussing, or triangulation, is formed by inserting diagonal structural members into rectangular areas of a structural frame, helping to stabilize the frame. If a single brace is used, it must be sufficiently resistant to tension and compression.

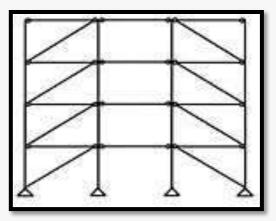


Fig-2: Single diagonal bracing

5.2. Cross bracings

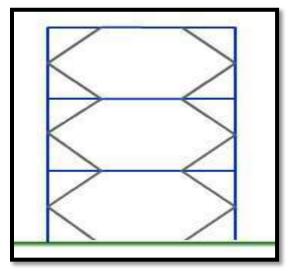

Cross-bracing (or X-bracing) uses two diagonal members crossing each other. These only need to be resistant to tension, one brace at a time acting to resist sideways forces, depending on the direction of loading. As a result, steel cables can also be used for cross-bracing.

Fig-3: Cross- bracing

5.3 K- Bracing

K-braces connect to the columns at mid-height. This frame has more flexibility for the provision of openings in the facade and results in the least bending in floor beams. K-bracing is generally discouraged in seismic regions because of the potential for column failure if the compression brace buckles.

Fig-4: K- bracing

6. ANALYTICAL MODELLING

In this study the seismic analysis for a G+25 storey structure is performed for both R.C.C and composite structures using ETABS software. The structure is located in Coimbatore of seismic zone III. The plan dimensions of the structure are 42m X 25m of 25 storey building analyzed for Equivalent static method of analysis is performed as per IS 1893.After analysis the seismic performance of both the structures are compared from the obtained results using ETABS software.

6.1 Modelling in ETABS

A 3-D model of the structure analysed drawn in ETABS. The following table gives the details used in modelling of the R.C.C and Composite structures.

	RCC Building	CFT Building						
MA	IES							
Grade of		M30						
Concrete F _{ck}								
Grade of	Fe 415	Fe 415,500						
Reinforcing								
Steel F _y								
	BUILDING PLAN							
No of Bays in X-	8	8						
direction								
No of Bays in Y-	6	6						
direction								
Width of bay in	6m	6m						
X-direction								
Width of bay in	5m	5m						
Y-direction								
Height of Storey	2.8,3 &3.2m	2.8,3 &3.2m						
	TIONAL PROPERT							
Column size	D=900mm	D=900mm,						
		t=9mm						
Beam size	550x250 mm	ISWB 600						
Slab Thickness	150mm	150mm						
Bracing size	200x300	ISMC 200						
L	OAD ASSIGNMENT							
Live load on	1.5 k N /m	1.5 k N /m						
roof slab								
Live load on	3 kN/m	3 kN/m						
floor slab								
Floor Finishing	1 k N /m	1 k N /m						
	SEISMIC DATA							
Seismic Zone	3	3						
Importance	1	1						
Factor								
Zone factor	0.16	0.16						
Soil type	Medium	Medium						
Response	3	3						
Reduction								
Factor								

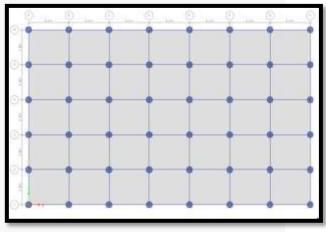
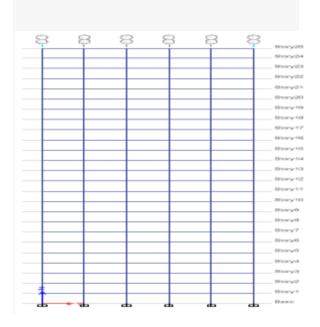
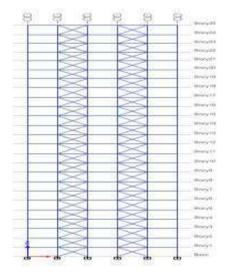
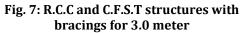
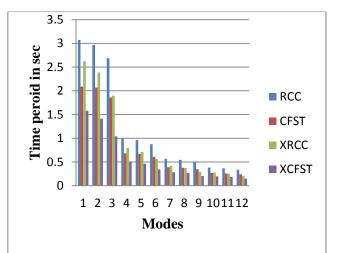





Fig. 5: Plan view of RCC Structure.

Fig.6: R.C.C and C.F.S.T structures without bracings for 3.0 meter

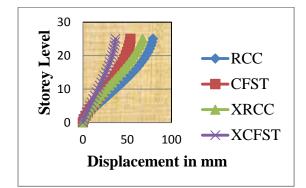


7. RESULTS AND DISCUSSION 7.1 FUNDAMENTAL NATURAL PERIOD

Natural Time Period of a building is the time taken by it to undergo one complete cycle of oscillation. It is an inherent property of a building controlled by its mass and stiffness. Its units are seconds (s). Thus, buildings that are heavy with larger mass and flexible with smaller stiffness have larger natural period than light and stiff buildings. 7.2 Comparison of Time period of varying different storey height buildings with and without bracings.

Table-1: Time period for 3m storey height

MODES	RCC	CFST	XRCC	XCFST
1	3.074	2.088	2.626	1.58
2	2.967	2.07	2.386	1.415
3	2.685	1.859	1.896	1.038
4	0.997	0.68	0.792	0.508
5	0.96	0.671	0.712	0.463
6	0.873	0.607	0.56	0.343
7	0.567	0.389	0.419	0.284
8	0.542	0.379	0.374	0.266
9	0.499	0.349	0.291	0.202
10	0.38	0.265	0.278	0.197
11	0.366	0.258	0.249	0.186
12	0.337	0.238	0.204	0.148


Fig-.8: Time period v/s mode for bare frame and X-bracing frame structure of 3.0m storey height

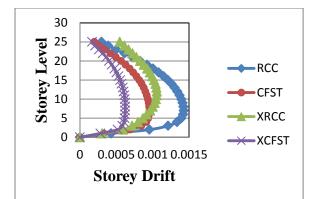
7.3 STOREY DISPLACEMENT

The maximum displacement at each floor level with respect to ground is examined in tables obtained from equivalent static analysis and response spectrum analysis. For better compatibility, the displacement for each model is taken along the longitudinal and transverse direction of ground motion which is plotted in charts below.

7.4 COMPARISION OF STOREY DISPLACEMENT RESULTS Table 2: Storey displacement of bare frame models for ESA in X-direction.

Storey Displacement in X-direction (mm)							
ESA	R	RCC Building			CFST Building		
STOREYS	2.8 m	3m	3.2m	2.8 m	3m	3.2m	
25	74.298	79.148	84.155	50.388	53.69	57.319	
24	73.441	78.265	83.244	49.819	53.147	56.697	
23	72.221	77.104	82.132	48.986	52.36	55.927	
22	70.639	75.609	80.711	47.9	51.336	54.941	
21	68.692	73.771	78.966	46.561	50.075	53.734	
20	66.405	71.601	76.898	44.992	48.589	52.31	
19	63.82	69.121	74.51	43.225	46.895	50.672	
18	61.192	66.359	71.612	41.44	45.015	48.688	
17	58.36	63.341	68.406	39.522	42.965	46.498	
16	55.334	60.095	64.935	37.477	40.766	44.136	
15	52.132	56.646	61.236	35.317	38.434	41.626	
14	48.773	53.02	57.339	33.055	35.988	38.988	
13	45.277	49.241	53.273	30.704	33.442	36.24	
12	41.662	45.331	49.063	28.278	30.811	33.4	
11	37.948	41.31	44.731	25.789	28.111	30.482	
10	34.153	37.199	40.3	23.248	25.353	27.502	
9	30.293	33.017	35.789	20.668	22.551	24.473	
8	26.385	28.78	31.22	18.057	19.715	21.407	
7	22.448	24.511	26.612	15.428	16.858	18.318	
6	18.504	20.23	21.991	12.791	13.992	15.217	
5	14.585	15.972	17.388	10.162	11.132	12.123	
4	10.742	11.79	12.862	7.569	8.307	9.063	
3	7.072	7.784	8.515	5.061	5.57	6.092	
2	3.757	4.15	4.556	2.749	3.036	3.332	
1	1.158	1.285	1.417	0.877	0.973	1.073	
Base	0	0	0	0	0	0	

Fig. 9: Comparison of Storey displacement for bare frame and X bracing frame structure of 3m storey height for ESA in X-direction.


7.5 STOREY DRIFT

The total lateral displacement that occurs in a single story of a multi-story building is known as storey drift. Drift in building frames is a result of flexural and shear mode contributions due to the column axial deformations and to the diagonal and beams deformations respectively. The maximum storey drifts for various building models along longitudinal and transverse direction obtained from ETABS are shown in tables and figures below.

7.6 COMPARISION OF STOREY DRIFT RESULTS

Table 3: Storey drift for bare frame modelsfor ESA in X-direction.

Storey Drift in X-direction						
ESA	RCC Building			CFST Building		
STOR EYS	2.8 m	3m	3.2m	2.8 m	3m	3.2m
25	0.000	0.000	0.000	0.000	0.000	0.000
20	309	296	286	207	197	196
24	0.000	0.000	0.000	0.000	0.000	0.000
	407	388	371	278	263	257
23	0.000	0.000	0.000	0.000	0.000	0.000
-	527	498	474	362	341	329
22	0.000	0.000	0.000	0.000	0.000	0.000
	649	613	582	446	42	402
21	0.000	0.000	0.000	0.000	0.000	0.000
	763	723	689	523	495	475
20	0.000	0.000	0.000	0.000	0.000	0.000
	862	827	796	589	565	546
19	0.000	0.000	0.000	0.000	0.000	0.000
	938	921	906	638	627	62
18	0.001	0.001	0.001	0.000	0.000	0.000
	011	006	002	685	683	684
17	0.001	0.001	0.001	0.000	0.000	0.000
17	081	082	085	73	733	738
16	0.001	0.001	0.001	0.000	0.000	0.000
10	144	15	156	771	777	785
15	0.001	0.001	0.001	0.000	0.000	0.000
15	2	209	218	808	816	824
14	0.001	0.001	0.001	0.000	0.000	0.000
14	249	26	271	84	849	859
13	0.001	0.001	0.001	0.000	0.000	0.000
15	291	303	316	866	877	888
12	0.001	0.001	0.001	0.000	0.000	0.000
12	326	34	354	889	9	912
11	0.001	0.001	0.001	0.000	0.000	0.000
11	356	37	385	907	919	931
10	0.001	0.001	0.001	0.000	0.000	0.000
10	379	394	409	922	934	947
9	0.001	0.001	0.001	0.000	0.000	0.000
9	396	412	428	932	945	958
8	0.001	0.001	0.001	0.000	0.000	0.000
0	406	423	44	939	952	966
7	0.001	0.001	0.001	0.000	0.000	0.000
/	409	427	444	942	956	969
6	0.001	0.001	0.001	0.000	0.000	0.000
0	4	419	438	939	953	967
5	0.001	0.001	0.001	0.000	0.000	0.000
э	372	394	415	926	942	956
4	0.001	0.001	0.001	0.000	0.000	0.000
	311	335	358	896	912	928
3	0.001	0.001	0.001	0.000	0.000	0.000
3	184	211	237	826	844	862
2	0.000	0.000	0.000	0.000	0.000	0.000
2	928	955	981	668	688	706
4	0.000	0.000	0.000	0.000	0.000	0.000
1	414	428	443	313	324	335
Daac			0			
Base	0	0	0	0	0	0

Fig. 10: Comparision of Storey drift for bare frame and X bracing frame structure of 3m storey height for ESA in X-direction.

7.7 STOREY SHEAR

The storey shear at each storey level for RCC and CFT buildings of 2.8m, 3mand 3.2m storey height are obtained for both X and Y directions presented in tables and charts, shown below.

7.8 COMPARISION OF STOREY SHEAR RESULTS

Table 4: Storey shear for bare frame modelsin X-direction.

Storey Shear in X-direction (k N)						
STO REY	RCC Building			CFST Building		
LEVE	2.8 m	3m	3.2m	2.8 m	3m	3.2m
LS						
25	376.0	348.3	324.4	495.6	452.7	429.0
	68	298	427	867	996	883
24	781.2	722.5	672.1	1045.	956.9	901.6
	226	661	066	257	17	767
23	1155.	1066.	989.7	1553.	1425.	1332.
	061	266	84	159	079	828
22	1495.	1380.	1281.	2015.	1853.	1729.
	289	728	819	398	415	177
21	1803.	1667.	1549.	2434.	2243.	2092.
	488	253	29	123	698	188
20	2081.	1927.	1793.	2811.	2597.	2423.
	243	139	276	484	695	326
19	2327.	2161.	2016.	3145.	2917.	2727.
	776	687	956	893	178	38
18	2546.	2372.	2219.	3442.	3203.	3003.
	924	195	596	67	915	257
17	2742.	2559.	2400.	3707.	3459.	3249.
	398	962	346	388	679	333
16	2915.	2726.	2560.	3941.	3686.	3467.
	552	29	457	878	237	309
15	3067.	2872.	2701.	4147.	3885.	3658.
	737	476	179	974	36	891
14	3200.	2999.	2823.	4327.	4058.	3825.
	308	82	764	505	819	779
13	3314.	3109.	2929.	4482.	4208.	3969.
	617	622	462	306	383	678
12	3412.	3203.	3019.	4614.	4335.	4092.
	016	181	525	207	822	29
11	3493.	3281.	3095.	4725.	4442.	4195.
	858	797	202	04	906	318
10	3561.	3346.	3157.	4816.	4531.	4280.
	496	768	745	638	406	465
9	3616.	3399.	3208.	4890.	4603.	4349.

	283	395	405	832	09	434
8	3659.	3440.	3248.	4949.	4659.	4403.
	571	977	433	455	73	929
7	3692.	3472.	3279.	4994.	4703.	4445.
	714	813	079	338	094	651
6	3717.	3496.	3301.	5027.	4734.	4476.
	064	203	595	313	954	304
5	3733.	3512.	3317.	5050.	4757.	4497.
	973	446	23	212	079	59
4	3744.	3522.	3327.	5064.	4771.	4511.
	795	841	237	868	239	214
3	3750.	3528.	3332.	5073.	4779.	4518.
	883	689	866	112	204	877
2	3753.	3531.	3335.	5076.	4782.	4522.
	588	288	368	776	744	283
1	3754.	3531.	3335.	5077.	4783.	4523.
	22	895	953	625	566	076

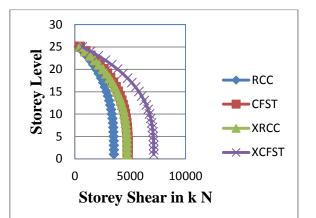


Fig. 11: Comparision of Storey shear for bare frame and X bracing frame structure of 3.0m storey height in X-direction

7.9 CONCLUSION

Fundamental Time Period:

- Fundamental time period decreased by providing bracings in the building frames.
- Time period for RCC buildings is greater than CFT buildings at different modes and can be reduced by using bracings, when compared with bare frame.
- Therefore bracings are considerably influence the overall performance of RCCand CFST framed structures.

Storey Displacement:

- Displacement reduces with introducing bracings for both RCC and CFT buildings, when compared with bare frame displacement.
- Increase in number of stories increases the lateral displacement along both thedirections.

Storey Drift:

- Storey drifts are found within the permissible limit as specified in clause 7.11.1of IS1893-2002.
- Storey drift for RCC buildings is greater than CFT buildings for ESAmethod, when

bracing is used for building drift action is less.

Therefore using bracings storey drift can be minimized.

Storey Shear:

- Storey shear in case of bare frame is less compared to frames with bracings storey shear value in both X and Y direction.
- CFST buildings showed greater storey shear value when compared with RCC buildings.
- In case of both RCC and CFST buildings, the base shear value increases in braced framed compared to bare frame.

7.10 Scope of future study

- Further studies can be conducted on high rise steel buildings with base isolators. The study can also be conducted by modeling the structures by using different types of base isolators with various damping mechanisms.
- The study can be conducted by providing dual system at different positions of thebuilding where shear wall and bracing can resist lateral forces more effectively.
- The study can also be further extended for buildings with irregular plan and elevation, where torsional moment occurs.
- Also we can compare the performance of concrete filled steel tube with concrete encased steel section columns.

REFERENCES

- Faizulla Z Shariff, Suma Devi"Comparative Study onRccAndCft Multi-Storeyed Buildings" IRJET, Volume: 02 Issue: 03 | June-2015.
- Manjari Blessing B V1*, Gayathri S2 Comparative Analysis of CFST and RCC Structures Subjected to Seismic Loading, IJCRGG, Vol.10 No.8, pp 409-416, 2017
- 3. Baochun CHEN, "Nonlinear analysis of axially loaded concrete-Filled tube columns with confinement effect", Journal of Structural Engineering 129:10, 1322-1329. in July 2008.
- 4. Lin-Hai Han1,Wei Li2, Reidar Bjorhovde3 "Developments and advanced applications of concrete filled steel tubular(CFST) structures: Members", ELSEVIER Journal of Constructional Steel Research 100,211-228 (2014)
- 5. Chirag M Patel, Anuj K Chandiwala, "A review paper on comparative study of reinforced concrete filled steel tube structure with traditional reinforced concrete and steel structure", volume-2 Issue-12, December 2015, IJAERD
- 6. .M.C. Arun Prasad, Mrs. V. Preetha, "Analytical investigation on RCC and steel concrete composite multi-storey building", volume-5 Issue-1, IJIAREC.
- 7. IS 1893 (Part 1):2002 "Criteria for earthquake resistant design of structure".