SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016

SIMILARITY OF QUADRILATERALS

${ }^{1}$ Sardor Bazarbayev
${ }^{1}$ Leading Specialist of the Department of Working with Talented Students on Science Olympiads of the Ministry of Public Education of the Republic of Uzbekistan, Master Student of the Faculty of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan.
${ }^{2}$ Davrbek Oltiboyev
${ }^{2}$ Student of the Faculty of Mathematics, National University of Uzbekistan, Winner of the Republican Olympiad, Tashkent, Uzbekistan

Abstract

In the article, there is very little information about the similarity of rectangles, but its applications are very wide, making it easy to solve olympiad problems. The paper presents the theorem on the similarity of rectangles and the solution of problems using this theorem. KEYWORDS: similarity, quadrilateral, cyclic, ratio, theorem, congruent, polar, circle, distance, angle, point, constant, midpoint, parallelogram, circumcircle.

We know very well about similarity of triangles. Horewer, although used widely, not a lot of people know about similarity of quadrilaterals. The method of finding similar quadrilaterals is called SSAAA Similarity. The following theorem will look into it broadly.

Theorem-1 (SSAAA Similarity) Two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime}$ and $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$. Prove that $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are similar.

EPRA International Journal of Research and Development (IJRD)

Proof: Notice $\square A B C$ and $\square A^{\prime} B^{\prime} C^{\prime}$ are similar from $S A S$ similarity. Therefore $\angle C^{\prime} A^{\prime} D^{\prime}=\angle A^{\prime}-\angle B^{\prime} A^{\prime} C^{\prime}=\angle A-\angle B A C=\angle C A D . \quad$ similarly $\quad \angle A^{\prime} C^{\prime} D^{\prime}=\angle A C D \quad$ so $\square A^{\prime} C^{\prime} D^{\prime} \sim \square A C D$. Now notice we have $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{A D}{A^{\prime} D^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$ so our proof is complete.

Now let's use this theorem to solve some interesting and hard problems.
Problem-1. Let $A B C D$ be a cyclic quadrilateral. We define G_{A}, H_{A}, N_{A} to denote the centroid, orthocenter, and nine-point center of $\square B C D$. We define G_{B}, etc. similarly. Show that $A B C D$, $H_{A} H_{B} H_{C} H_{D}, G_{A} G_{B} G_{C} G_{D}, N_{A} N_{B} N_{C} N_{D}$ are all similar quadrilaterals with a similarity ratio of 6:6:2:3, respectively.

Proof: From a well-known lemma, $A H_{B}=2 R \cos \angle D A C$. We know

EPRA International Journal of Research and Development (IJRD)

$$
2 R \cos \angle D A C=2 R \cos \angle D B C=B H_{A}
$$

Also $A H_{B} \perp D C \perp B H_{A}$, so $A B H_{A} H_{B}$ is a parallelogram, so $A B \| H_{A} H_{B}, A B=H_{A} H_{B}$. Similarly, $B C\left\|H_{B} H_{C}, C D\right\| H_{C} H_{D}, D A \| H_{D} H_{A}$, and so $A B C D$ is similar to $H_{A} H_{B} H_{C} H_{D}$, and furthermore congruent. It is well known that the nine-point center N_{A} lies on the Euler line, and is the midpoint between the circumcenter O and the orthocenter H_{A}. Therefore $N_{A} N_{B} N_{C} N_{D}$ is simply a dilation of $H_{A} H_{B} H_{C} H_{D}$ by a factor of two, meaning it is similar to $H_{A} H_{B} H_{C} H_{D}$ and therefore similar to $A B C D$ with a ratio of $\frac{1}{2}$. It is well-known that $O G: O H=1: 3$, so $G_{A} G_{B} G_{C} G_{D}$ is similar to $H_{A} H_{B} H_{C} H_{D}$ with a ratio of $\frac{1}{3}$. Since $H_{A} H_{B} H_{C} H_{D}$ is congruent to $A B C D$, we get our result.

Problem-2. (Salmon's Lemma) Let O be the center of an arbitrary circle and let P, Q be arbitrary points. If a is the distance from P to the polar of Q, and b is the distance from Q to the polar of P, then show that $\frac{O P}{O Q}=\frac{a}{b}$.

Solution: Draw the tangents from P, Q to circle O to intersect at A, B, C, D respectively. Notice $A B$ is the polar of P, and $C D$ is the polar of Q. Drop perpendiculars from P, Q to $C D, A B$ at X, Y respectively. Let $P O$ intersect $A B$ at P^{\prime}, and $Q O$ intersect $C D$ at Q^{\prime}.

Notice that because $A B$ is the polar of P, we have $\angle P P^{\prime} B=\angle P B O=90^{\circ}$. From similar triangles $\square P^{\prime} B O \sim \square B P O$, we have $O P \cdot O P^{\prime}=O B^{2}=R^{2}$, and similarly from right triangle $O C Q$ we have $O Q \cdot O Q^{\prime}=O C^{2}=R^{2}$, so $O Q \cdot O Q^{\prime}=O P \cdot O P^{\prime}$. Notice quadrilaterals $X P O Q^{\prime}$ and $Y Q O P^{\prime}$ are similar because they have: two right angles each at X, Q^{\prime} and Y, P^{\prime}; share an angle at O; and furthermore satisfy $\frac{O Q^{\prime}}{O P^{\prime}}=\frac{O P}{O Q}$. From this we get $\frac{O P}{O Q}=\frac{P X}{Q Y}=\frac{a}{b}$ as desired.

EPRA International Journal of Research and Development (IJRD)

Volume: 5 | Issue: 8 | August 2020

Problem-3. In a triangle $A B C$, construct altitudes $A D, B E, C F$ and let H be the orthocenter. Let O_{1}, O_{2}, O_{3} be the incenters of triangles $E H F, F H D, D H E$, respectively. Prove that the lines $A O_{1}$, $\mathrm{BO}_{2}, \mathrm{CO}_{3}$ are concurrent.

Proof: Denote H_{1} as the point outside triangle $A B C$ where $\angle C B H_{1}=\angle F E H$ and $\angle B C H_{1}=\angle E F H$. Denote the incenter of the triangle $H_{1} B C$ as O_{1}^{\prime}. Define O_{2}^{\prime} and O_{3}^{\prime} similarly. Then, by Jacobi's Theorem, we see that $A O_{1}^{\prime}, B O_{2}^{\prime}, C O_{3}^{\prime}$ are concurrent at a point P. Notice that because $\angle B F C=\angle B E C=90^{\circ}, B F E C$ is cyclic so from Power of a Point, $\frac{A F}{A E}=\frac{A C}{A B}$. Also, $\angle A F E=\angle A C B$, $\angle A E F=\angle A B C$ so $\angle A F H=\angle A C H_{1}$ and $\angle A E H=\angle A B H_{1}$. So from $S S A A A$ similarity, we know quadrilaterals $A E H F$ and $A B H_{1} C$ are similar. Therefore $\angle B A O_{1}=\angle C A O_{1}^{\prime}$. Similarly, we get $\angle C B O_{2}=\angle A B O_{2}^{\prime}$ and $\angle A C O_{3}=\angle B C O_{3}^{\prime}$, so $A O_{1}, B O_{2}, C O_{3}$ are concurrent at the isogonal conjugate of P.

Next, we will prove an intriguing lemma that will be key to a more difficult problem. Both the lemma and the following problem will use properties of similar quadrilaterals in their proofs.

Lemma: Let $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$ be directly similar n-gons, and k be a real number. Show that $C_{1} C_{2} \ldots C_{n}$ is similar to both $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$, where for $1 \leq i \leq n, C_{i}$ is on $A_{i} B_{i}$ with ratio $A_{i} C_{i}: C_{i} B_{i}=k$.

Proof: Consider the center of spiral similarity X of $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$. Therefore all triangles of the form $A_{i} X B_{i}$ for $1 \leq i \leq n$ are similar. We know all degenerate quadrilaterals of the form $X A_{i} C_{i} B_{i}$ have $A_{i} C_{i}: C_{i} B_{i}, \angle X A_{i} C_{i}, \angle A_{i} C_{i} B_{i}$ and $\angle X B_{i} C_{i}$ constant, because they are equal to k, $\angle X A_{i} B_{i}, 180^{\circ}$, and $\angle X B_{i} A_{i}$, respectively, which are known to be constant. Therefore, from SSAAA

EPRA International Journal of Research and Development (IJRD)

Volume: 5 | Issue: 8 | August 2020

similarity, we have for all $1 \leq i \leq n$, the quadrilaterals $X A_{i} C_{i} B_{i}$ are similar. It is now clear that the ratio $\frac{X C_{i}}{X A_{i}}$ and the angle $\angle C_{i} X A_{i}$ are constant over $1 \leq i \leq n$, meaning there exists a spiral similarity mapping $A_{1} A_{2} \ldots A_{n}$ to $C_{1} C_{2} \ldots C_{n}$ implying the result.

Problem-4. (USA TST - 2000) Let $A B C D$ be a cyclic quadrilateral and let E and F be the feet of perpendiculars from the intersection of diagonals $A C$ and $B D$ to $A B$ and $C D$, respectively. Prove that $E F$ is perpendicular to the line through the midpoints of $A D$ and $B C$.

Proof: Denote P as the intersection of the diagonals and M_{1} and M_{2} as the midpoints of $A D$ and $B C$, respectively. Let X and Y be the reflections of P across $A B$ and $C D$, respectively. Since $\angle A B D=\angle A C D$ and $\angle B A C=\angle B D C$, triangles $A P B$ and $D P C$ are similar, which implies quadrilaterals $A P B X$ and $D Y C P$ are similar. Notice quadrilateral $M_{1} E M_{2} F$ is formed by the midpoints of $A D, P Y, B C$ and $P X$ so from the preceding lemma, this quadrilateral is similar to both $A P B X$ and $D Y C P$. Because $A P B X$ and $D Y C P$ are kites, $M_{1} E M_{2} F$ is also a kite which implies $M_{1} M_{2} \perp E F$ as desired.

Problem-5. (ISL-2009) Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G and H.

Proof: Let G^{\prime} be the reflection of point F across point G, and let H^{\prime} be the reflection of point F across point H. Note that we have parellelograms $F A G^{\prime} B$ and $F C H^{\prime} D$, which are similar because triangles $F A B$ and $F C D$ are similar. From this and from $\square E A B \sim \square E D C$ we obtain that quadrilaterals $F D E C$ and $G^{\prime} A E B$ are similar, and the quadrilaterals $F A E B$ and $H^{\prime} D E C$ are similar. These pairs of similar quadrilaterals implies that the position of point E in $F A G^{\prime} B$ corresponds to the same position as point E in $F C H^{\prime} D$. Therfore, we have that $\angle G^{\prime} E F=\angle H^{\prime} E F$ which implies that $E, G^{\prime}, H^{\prime}$ are collinear. Because $G^{\prime} H^{\prime}$ is a homothetic transformation of scale 2 of $G H$ in respect to the point F, we see that $G H$ and $G^{\prime} H^{\prime}$ are parallel. This means that $\angle G H E=\angle H^{\prime} E H$, and since we know that $\angle F E G=\angle H^{\prime} E H$, we have $\angle F E G=\angle G H E$ implying $E F$ is a tangent to the circumcircle of $G E H$ at E.

Problem-6. (IMO 2013) Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of altitudes from B and C, respectively. Denote by w_{1} the circumcircle of $\square B W N$, and let X be the point such that $W X$ is a diameter of w_{1}. Analogously, denote by w_{2} the circumcircle of $C W M$, and let Y be the point such that $W Y$ is a diameter of w_{2}. Prove that X, Y and H are collinear.

EPRA International Journal of Research and Development (IJRD)

Proof: Note that $\angle A N C=\angle H N B=90^{\circ}$, and $\angle A=90^{\circ}-\angle A B M=\angle N H B$, so $\square N H B \sim \square N A C$. Also, we know $\angle N X B=180^{\circ}-\angle N W B=\angle N W C$, and because $W X$ is a diameter, $\angle X N B=90^{\circ}-\angle B N W=\angle W N C$. Therefore, $\square X N B \sim \square W N C$. From both similar triangles we get $\angle N A C=\angle N H B, \angle N X B=\angle N W C, \angle A N W=\angle A N C+\angle C N W=\angle H N B+\angle B N X=\angle X N H$ and $\frac{N A}{A C}=\frac{N H}{H B}$. Therefore, from $S S A A A$, quadrilaterals $X N H B$ and $W N A C$ are similar. From this we obtain $\angle N H X=\angle N A W=\angle W A B$. We analogously obtain quadrilaterals $Y M H C$ and $W M A B$ are similar, meaning $\angle W A B=\angle Y H C$, and we conclude that $\angle N H X=\angle Y H C$. Therefore points X, Y, H are collinear.

Problem-7. (IMO 2004) In a convex quadrilateral $A B C D$, the diagonal $B D$ bisects neither the $\angle A B C$ nor the $\angle C D A$. The point P lies inside $A B C D$ and satisfies $\angle P B C=\angle D B A$, $\angle P D C=\angle B D A$. Prove that $A B C D$ is a cyclic quadrilateral if $A P=C P$.

Proof: Assume $A \notin(B D C)$. Let $X=B P \bigcap(B D C)$ and $Y=D P \bigcap(B D C)$. We shall provethat quadrilaterals $P B A D$ and $P Y C X$ are similar, and furthermore congruent. By angle-chasing: $\angle A B P=\angle C B D=\angle C Y D, \angle A D P=\angle C D B=\angle C X B$ and $\angle B P D=\angle Y P X$. Also, by Power of a Point $\frac{P B}{P D}=\frac{P Y}{P X}$. So from $S S A A A$ similarity we can conclude that $P B A D \sim P Y C X$. But the similarity
ratio between the two is $\frac{A P}{C P}$ which equals one, so the two quadrilaterals are congruent. In fact they are reflections of each other over the angle bisector of $\angle D P X$. Since $B Y C X D$ is cyclic its reflection $Y B A D X$ is cyclic as well. But these two circles are the same implying that $A B C D$ is cyclic.

Independent Study Problems.

Problem-8. (India - 2014) In a acute-angled triangle $A B C$, a point D lies on the segment $B C$. Let $O_{1} O_{2}$ denote the circumcentres of triangles $A B D$ and $A C D$ respectively. Prove that the line joining the circumcentre of triangle $A B C$ and the orthocentre of triangle $O_{1} O_{2} D$ is parallel to $B C$.

Problem-9. (Korea-2010) Let $A B C D$ be a cyclic convex quadrilateral. Let E be the intersection of lines $A B, C D . P$ is the intersection of line passing B and perpendicular to $A C$, and line passing C and perpendicular to $B D . Q$ is the intersection of line passing D and perpendicular to $A C$, and line passing A and perpendicular to $B D$. Prove that three points E, P, Q are collinear.

Problem-10. (USA-2006) Let $A B C$ be a triangle. Triangles $P A B$ and $Q A C$ are constructed outside of triangle $A B C$ such that $A P=A B$ and $A Q=A C$ and $\angle B A P=\angle C A Q$. Segments $B Q$ and $C P$ meet at R. Let O be the circumcenter of triangle $B C R$. Prove that $A O \perp P Q$.

Problem-11. (ISL-2003) Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Problem-12. (Greece-2001) A triangle $A B C$ is inscribed in a circle of radius R. Let $B D$ and $C E$ be the bisectors of the angles B and C respectively and let the line $D E$ meet the arc $A B$ not containing C at point K. Let A_{1}, B_{1}, C_{1} be the feet of perpendiculars from K to $B C, A C, A B$ and x, y be the distances from D and E to $B C$, respectively.
(a) Express the lengths of $K A_{1}, K B_{1}, K C_{1}$ in terms of x, y and the ratio $l=\frac{K D}{E D}$.
(b) Prove that $\frac{1}{K B}=\frac{1}{K A}+\frac{1}{K C}$.

REFERENCES

1. R. A. Johnson, Advanced Euclidean Geometry, 2007
2. Guangqi Cui, Akshaj Kadaveru, Joshua Lee, Sagar Maheshwari,-,,Similar Quadrilaterals',
