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ABSTRACT 
To date, extensive experimental material has been accumulated on the behavior of flows in the zone of transition of 

a laminar flow to a turbulent one, and the available information indicates the great complexity of this 

phenomenon. The solution to the problem of hydrodynamic stability is of great practical importance, since all 

hydrodynamic characteristics of a motion essentially depend on whether this motion is laminar or turbulent. The 

application of numerical methods to the solution of the basic equations - the Navier-Stokes equations - for large 

Reynolds numbers runs into serious difficulties. They are mainly associated with the presence of a small 

parameter at the highest derivative and, as a consequence, the appearance in the solution of regions of strong 

spatial inhomogeneity. Therefore, the requirements for the approximation properties of numerical methods 

increase dramatically. The stability problem for single-phase hydrodynamic systems is reduced to an eigenvalue 

problem for the Orr-Sommerfeld equation. The existing methods for modeling the stability problem make it possible 

to calculate with good accuracy individual eigenvalues of the stability problem and obtain a solution in the regions 

of inhomogeneity. However, when calculating the spectrum of eigenvalues, as well as own functions, their 

efficiency turns out to be insufficient. The Orr-Sommerfeld equations contain a small parameter at the highest 

derivative; therefore, considerable difficulties arise in obtaining approximate solutions close to exact ones. 

KEYWORDS: hydrodynamic stability, Reynolds number, wave number, eigenvalues, own functions, single-

phase, Orr-Sommerfeld equations, spectral-grid method, high accuracy, efficiency, efficiency, laminar and 

turbulent flow 

 

INTRODUCTION 
Viscosity reflects the property of a liquid to resist the relative movement of adjacent liquid layers. 

Separate concentric layers slide over one another, and moreover so that the speed everywhere has an axial 
direction. This kind of movement is called laminar flow (from the Latin word "lamina" - layer) [1-5]. Due to 
viscosity, liquid particles close to the walls flow more slowly than particles farther from the walls. The flow 
occurs in an orderly manner in the form of layers moving relative to each other. (layered or laminar flow). 
However, observations show that at higher Reynolds numbers, the flow ceases to be ordered, i.e. becomes 
turbulent. The first systematic studies of both, such different forms of flow — laminar and turbulent — were 
carried out by O. Reynolds [6]. He also carried out an experiment with a colored trickle. Until now, as long as 
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the flow remains laminar, the colored liquid introduced into it moves in the pipe in the form of a sharply 
outlined trickle, but as soon as the flow becomes turbulent, this trickle spreads out and almost uniformly colors 
the entire liquid moving in the pipe. This shows that in a turbulent flow, transverse motions are superimposed on 
the main fluid flow, which occurs in the direction of the pipe axis, i.e. movements occurring in a direction 
perpendicular to the pipe axis. These transverse movements lead to mixing of the moving fluid. As a result of 
his research, O. Reynolds discovered the similarity law, also named after him. According to the Reynolds 
similarity law, the transition of a laminar flow to a turbulent one always occurs at approximately the same 

Reynolds number Re  = ρUL/µ, where ρ is the density of the liquid or gas, µ is the viscosity, U is the 
characteristic velocity of the main flow, and L is the characteristic length. The Reynolds number at which the 
transition of a laminar flow to a turbulent one occurs is called the critical Reynolds number Rekp. Therefore, 
those flows for which Re<Rekp are laminar and the same flows for which Re>Rekp are turbulent. Theoretical 
studies aimed at explaining the above-described phenomenon of the transition of a laminar flow to a turbulent 
one have been rocking already in the last century. All these studies are based on the idea that laminar flow is 
subject to some small disturbances. Each theory sought to trace the development in time of perturbations 
imposed on the main flow, and the form of these perturbations was specially determined in each individual case. 
The decisive issue to be resolved was to determine whether the disturbances were dying out or growing over 
time. Damping of disturbances with time should mean that the main flow is stable and vice versa, the growth of 
disturbances with time should mean that the main flow is unstable and, therefore, a transition to a turbulent flow 
is possible. In this way, they tried to create a theory of the stability of a laminar flow, which would theoretically 
calculate the critical Reynolds number Rekp for a given laminar flow. It is now generally accepted that 
turbulence is a more natural state of fluid flow, and laminar flow occurs only when the Reynolds number is so 
small that the deviation from this flow tends to attenuate. 

 
MAIN PART 

The study of the hydrodynamic stability problem is reduced to the numerical modeling of the generalized 
eigenvalue problem for the Orr-Sommerfeld equation [6]: 
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with homogeneous boundary conditions (2), which mean impermeability and adhesion requirements. Here 
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 is the differential operator, U(ψ) is the velocity profile of the main flow, ψ is the 

coordinate directed across the main flow, k is the wavenumber, Re is the Reynolds number, ψ(η) = ψr +iψi is 

the amplitude of the stream function for perturbations, λ = λr + iλi are the eigenvalues of the problem, where λr is 

the phase velocity of the wave disturbance, λi is the growth coefficient. If λi > 0, then the flow is unstable, if 2 λi 

< 0, then it is stable. If λi = 0, then the oscillations are neutral stable. From the point of view of the problem of 
hydrodynamic stability, it is of interest to find the eigenvalues of problem (1) - (2) [5-10]. At the same time, 
there is another independent problem, the study of the behavior of the own functions of the problem (1) - (2). In 

this paper, we study the dynamics of changes in the real and imaginary parts of the own functions ψ(y) = ψr + 

iψi. 
For the numerical simulation of the problem (1) - (2), we use the spectral-grid method (SSM) [15-23]. 

For this, the interval of integration [η0,ηN] is divided into a grid η0 < η1 < ... < ηN  and thus we obtain N different 
elements: 

[η0,η1],[η1,η2],...,[ηj,ηj+1],...,[ηN−1,ηN], 
 

Differential equation (1) on each of these elements takes the form 
 

D2ψj − ikRe[Uj ((η) − λ)D − Uj
′′
(η)]ψ = 0,  (3) 

j = 0,1,2,...,N 
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Boundary conditions (2) are written at the points η0 and ηN: 
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at the points of the partition, we require the continuity of the solution to equation (3) and its derivatives up to the 
third order. These conditions are of the form 
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where t indicates the order of the derivative. We represent the solutions ψj of equation (3) - (4) as a series in the 

Chebyshev polynomials of the first series. To do this, we map each element [ηj,ηj+1] on the interval [−1,+1] 
using the following replacement of the independent variable: 
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From conditions (4) - (5) we have 
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We will seek an approximate solution to problem (7) - (8) at each of the elements in the form 
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where Tn(y) are Chebyshev polynomials of the first kind, 
)( j

l
y  are their nodes, apj is the number of 

polynomials used to approximate the solution on the j - grid element. The expansion coefficients 
)( j

n
b  for the 

function Uj(y) in (9) are determined by the following inverse transformation [7-12]: 
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c0 = cpj = 2, at m   0,pj,j = 1,2,...,N. 
For the convenience of presenting the SSM, we write equation (7) in operator form, i.e. 

Ljψj = 0,j = 1,2,...,N,   (10) 
where Lj is the differential operator defined by the formula 

  )())((Re2 yUDyUikDL
jjjjjjj
   
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Substituting series (9) into equation (10), we require that the left-hand side of (10) on each of the grid 
elements be orthogonal to the first (pj −4)−m Chebyshev polynomials, i.e. 

 (Ljψj,Tn) = 0,n = 0,1,...,pj − 4,j = 1,2,...,N (11) 

where 
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2 )1)(()(),( dxxxgxfgf  is the scalar product on the interval ]1,1[  . In addition, 

we require that the series in Chebyshev polynomials (9) exactly satisfy the boundary conditions and continuity 
conditions (8). Taking into account the following properties of the Chebyshev polynomials 

n

n
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 , we have m¯ = 

N(pj +1) equations. These equations are: N(pj −3) - orthogonality equations (11), 4(N–1) - continuity conditions, 
and 4 boundary conditions. In the general case, when different numbers of Chebyshev polynomials are given on 
different elements, we obtain m¯ = (p1 + p2 + ... + pN + N) equations for determining the same number of 
unknowns. It is convenient to write the resulting system in matrix form: 

(A − λB)x = 0   (12) 
The complex matrices A and B have a block-diagonal structure, and the vector x contains the coefficients 
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It is seen that the matrix is degenerate and contains 4N zero rows corresponding to the boundary 

conditions and continuity conditions, since they do not depend on λ. The corresponding rows of the matrix will 
contain integers obtained from the values of the Chebyshev polynomials and their derivatives up to the third 
order at the points −1 or 1. It is impractical to store these integer elements in the complex matrix; moreover, in 
the complex matrix, the elements corresponding to these rows are equal to zero. Therefore, when compiling a 
program, complex matrices and are described as follows: 

A(¯m−4N,m¯),B(¯m−4N,m¯) where m¯ is the total number of equations in the algebraic system (12), 
and N is the number of grid elements in the SSM. 

With the help of elementary transformations of columns of matrices and system (12) we will bring to the 
form [16-23] 
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and Q is the corresponding non-degenerate transformation [15-23]. 
With such a transformation Q, the zero rows of the matrix B do not change, and the nonzero rows are 

transformed according to the transformation Q. As a result, a number of equations in system (14) become 
autonomous: 
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From this we can see that the first four components of the eigenvector from each grid element are equal 
to zero, 
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Then the first four rows and the first four columns can be excluded from each block of matrices AQ and 
BQ. The remaining equations give the algebraic system 
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where W is generally a nondegenerate square matrix. Then the order of the matrices T and W will be as 

follows: )4(*)4( NmNm  , where m  is the total number of polynomials in the SSM, i.e. 
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The Q transformation is used to zero out some elements of the equations obtained from the boundary 
conditions and continuity conditions. For clarity, these conditions are written in matrices A and B. The 
transformation Q corresponding to the boundary conditions and continuity conditions is formed separately 
from the matrices A and B. The transformation Q is mainly focused on reducing equations with the 
corresponding boundary conditions and continuity conditions of block-diagonal form. Multiplying (15) on the 
left by the matrix W(–1) , we obtain 

(D − λE)Y = 0,D = TW(–1).         (16) 
The eigenvalues of system (16) can be found by standard methods. In this work, they were determined 

using the QR-algorithm. Formations Q are the number of rows and columns of complex matrices and are 
reduced by 4N, where N is the number of grid elements. At the same time, the high accuracy of the method 
remains. 

 
RESULTS AND DISCUSSION 

Let the main flow U(y) in (3) be the Poiseuille flow in a flat infinite channel, i.e. U(y) = 1 − y2. In this 
case, the characteristic length L is the channel half-width, and the characteristic velocity is the average velocity 

U0, of the main flow. The Reynolds number is determined by the formula Re = ρU0L/µ, where ρ is the density, 
µ is the viscosity of the gas. Boundary conditions (4) for disturbances in the Poiseuille flow have the form 

)17(.0)1(,0)1( 
dy

d
  

Equalities (17) express the usual requirements for impermeability and adhesion. For numerical 
modeling (3), (17), the above-stated spectral-grid method (SSM) was applied. 

The calculation of the spectrum of the Orr-Sommerfeld equation, as well as the calculation of the 
critical Reynolds number for the Poiseuille flow using the spectral method was carried out in [8], and using the 
spectral-grid method was carried out in [15, 19, 21]. In these works, using 32 Chebishev polynomials for k = 
1,Re = 104, the eigenvalue for the unstable mode was found with a high accuracy 

λ = 0.23752649 + 0.00373967i, 
moreover, the exact knowledge of this mode is 

λ = 0.23752649 + 0.00373967i. 
The works [15, 19, 21] illustrate the high accuracy and efficiency of the spectral-grid method. 
At the same time, in [24], using a difference scheme of the sixth order of accuracy with nodes uniformly 

spaced relative to the stretched coordinate, the same unstable mode was found with an accuracy 

λ = 0.23752964 + 0.00374248i. 
with 43 knots as well 

λ = 0.23752650 + 0.00373969i. 
with 100 mesh points. On a uniform grid, the same scheme gives 

λ = 0.2370744 + 0.00375620i. 
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with 43 grid points. In [9], it was found 

λ = 0.237413 + 0.003681i. 
using 50 terms of the expansion in symmetric functions. 
The results obtained by the spectral-grid method with an accuracy of 7 digits are obtained when using in 

the approximation such a number of polynomials, which is more than 2 times less than the number of grid 
nodes in finite-difference methods required to obtain the same accuracy. Taking into account that the matrix 
methods for finding eigenvalues used both in [9] and [24] require time proportionally to the cube, and memory 
is the square of the number of polynomials (functions, grid points), the spectral-grid method is much superior 
to other methods in efficiency. 

The eigenvalues and own functions of the Orr-Sommerfeld equation were calculated for various 

Reynolds numbers lying outside (λi < 0) on (λi = 0) and inside (λi > 0) the neutral curve (λi = 0). The results are 
shown in tables 1; 2, in table 2 for comparison, some results of work [25] are given. 

 

Table 1 
Re K λr λi 

10000 1 0.2375265 0.0037397 
6000 1.02071 0.2622475 0.0003575 

5772.22 1.02056 0.2640017 0.0000000 
5772.12 1.02071 0.2640200 -0.0000002 

5250 1.02071 0.2683958 -0.0009652 
6000 0.848 0.2398535 -0.0050281 
6000 0.875 0.2436641 -0.0033966 

 
Table 2 

Re K Article [25] 
λr λi 

6000 1.02071 0.2623 0.0003 
5772.12 1.02071 0.26402 0.000 

5250 1.02071 0.2684 -0.0010 
 

To numerically simulate the amplitude of the stream function for perturbations, one should calculate the 
vector Q(−1)x for system (13), and thus, the components of the eigenvector 

,,...,( )()1(

0

N

pN

T aaX   

Then, using these components, sums (9) are calculated and the amplitude of the stream function for 
disturbances in the Poiseuille flow is determined. The graphs of the stream function amplitude for disturbances 
of an unstable symmetric mode for the Poiseuille flow at Re = 6 · 103 and k = 1.02071 in Fig. 1 and at Re = 104 
and k = 1 in Fig. 2 

 

 
Fig. 1 Change in the amplitude of the stream function 

at Re = 6 × 106 and k=1.02071 
Fig. 2 Change in the amplitude of the stream function 

at Re =104 and k=1 
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The calculations performed once again demonstrate the high accuracy and efficiency of the spectral-grid 

method. 

 
CONCLUSIONS 

1. An algorithm of the spectral-grid method for calculating the amplitude of the stream function has been 
developed. [6] 

2. The eigenvalues and own functions of the plane Poiseuille flow are obtained for various Reynolds 
numbers and wave numbers. It is shown that the spectral-grid method is very effective in comparison 
with other methods for solving the problem of hydrodynamic stability. 

3. The amplitudes of the stream function for disturbances are investigated and their graphs are plotted. 
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