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ABSTRACT

To date, extensive experimental matertal has been accumulated on the behavior of flows in the zone of transition of
a laminar flow to a turbulent one, and the available information indicates the great complexity of this
phenomenon. The solution to the problem of hydrodynamic stability is of great practical importance, since all
hydrodynamic characteristics of a motion essentially depend on whether this motion is laminar or turbulent. The
application of numerical methods to the solution of the basic equations - the Navier-Stokes equations - for large
Reynolds numbers runs into serious difficulties. They are mainly associated with the presence of a small
parameter at the highest derivative and, as a consequence, the appearance in the solution of regions of strong
spattal inhomogeneity. Therefore, the requirements for the approximation properties of numerical methods
increase dramatically. The stability problem for single-phase hydrodynamic systems is reduced to an eigenvalue
problem for the Orr-Sommerfeld equation. The existing methods for modeling the stability problem make it possible
to calculate with good accuracy individual etgenvalues of the stability problem and obtain a solution in the regions
of inhomogeneity. However, when calculating the spectrum of eigenvalues, as well as own functions, their
efficiency turns out to be insufficient. The Orr-Sommerfeld equations contain a small parameter at the highest
derivative; therefore, considerable difficulties arise in obtaining approximate solutions close to exact ones.
KEYWORDS: hydrodynamic stability, Reynolds number, wave number, eigenvalues, own functions, single-
phase, Orr-Sommerfeld equations, spectral-grid method, high accuracy, efficiency, efficiency, laminar and
turbulent flow

INTRODUCTION

Viscosity reflects the property of a liquid to resist the relative movement of adjacent liquid layers.
Separate concentric layers slide over one another, and moreover so that the speed everywhere has an axial
direction. This kind of movement is called laminar flow (from the Latin word "lamina" - layer) [1-5]. Due to
viscosity, liquid particles close to the walls flow more slowly than particles farther from the walls. The flow
occurs in an orderly manner in the form of layers moving relative to each other. (layered or laminar flow).
However, observations show that at higher Reynolds numbers, the flow ceases to be ordered, i.e. becomes
turbulent. The first systematic studies of both, such different forms of flow — laminar and turbulent — were
carried out by O. Reynolds [6]. He also carried out an experiment with a colored trickle. Until now, as long as
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the flow remains laminar, the colored liquid introduced into it moves in the pipe in the form of a sharply
outlined trickle, but as soon as the flow becomes turbulent, this trickle spreads out and almost uniformly colors
the entire liquid moving in the pipe. This shows that in a turbulent flow, transverse motions are superimposed on
the main fluid flow, which occurs in the direction of the pipe axis, i.e. movements occurring in a direction
perpendicular to the pipe axis. These transverse movements lead to mixing of the moving fluid. As a result of
his research, O. Reynolds discovered the similarity law, also named after him. According to the Reynolds
similarity law, the transition of a laminar flow to a turbulent one always occurs at approximately the same
Reynolds number Re = pUL/u, where p is the density of the liquid or gas, p is the viscosity, U is the
characteristic velocity of the main flow, and L is the characteristic length. The Reynolds number at which the
transition of a laminar flow to a turbulent one occurs is called the critical Reynolds number Rey,. Therefore,
those flows for which Re<Rey, are laminar and the same flows for which Re>Rey, are turbulent. Theoretical
studies aimed at explaining the above-described phenomenon of the transition of a laminar flow to a turbulent
one have been rocking already in the last century. All these studies are based on the idea that laminar flow is
subject to some small disturbances. Each theory sought to trace the development in time of perturbations
imposed on the main flow, and the form of these perturbations was specially determined in each individual case.
The decisive issue to be resolved was to determine whether the disturbances were dying out or growing over
time. Damping of disturbances with time should mean that the main flow is stable and vice versa, the growth of
disturbances with time should mean that the main flow is unstable and, therefore, a transition to a turbulent flow
is possible. In this way, they tried to create a theory of the stability of a laminar flow, which would theoretically
calculate the critical Reynolds number Rey, for a given laminar flow. It is now generally accepted that
turbulence is a more natural state of fluid flow, and laminar flow occurs only when the Reynolds number is so
small that the deviation from this flow tends to attenuate.

MAIN PART
The study of the hydrodynamic stability problem is reduced to the numerical modeling of the generalized

eigenvalue problem for the Orr-Sommerfeld equation [6]:
1 d*U
—— D’ —|(U(n)-21)D - =0, 1

Vo <y <y,

w(no)=?j—‘”(wo)=o,w<m)=d—"’(wl)=o @
n dn

with homogeneous boundary conditions (2), which mean impermeability and adhesion requirements. Here

2
D=—
dy
coordinate directed across the main flow, & is the wavenumber, Re is the Reynolds number, w(n) = W +iy; is
the amplitude of the stream function for perturbations, A = A+ iA; are the eigenvalues of the problem, where A, is
the phase velocity of the wave disturbance, A; is the growth coefficient. If A;>0, then the flow is unstable, if 2 A;
<0, then it is stable. If A;= 0, then the oscillations are neutral stable. From the point of view of the problem of
hydrodynamic stability, it is of interest to find the eigenvalues of problem (1) - (2) [5-10]. At the same time,
there is another independent problem, the study of the behavior of the own functions of the problem (1) - (2). In
this paper, we study the dynamics of changes in the real and imaginary parts of the own functions @(y) = @+
;.

- k2 is the differential operator, U{y) is the velocity profile of the main flow,  is the

For the numerical simulation of the problem (1) - (2), we use the spectral-grid method (SSM) [15-23].
For this, the interval of integration [fo,n~] is divided into a grid 1o <n <... <nx and thus we obtain N different
elements:

[’70)’71])[’71)’72])"') [’7/’;’7/'“ ]""’[UM]’UN]’

Differential equation (1) on each of these elements takes the form

Dy~ ikRA Ui (M) = VD= U ()]w = 0, 3)
j=0,12,...,N
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Boundary conditions (2) are written at the points 1o and nu:

dy. dyy
v (0) == (1) = 0y (1) = (7y) =0 @)
dn dn
at the points of the partition, we require the continuity of the solution to equation (3) and its derivatives up to the
third order. These conditions are of the form

wawQ=yﬁ%@th=0LZ&j=L2w”N—1. (5)
where findicates the order of the derivative. We represent the solutions ; of equation (3) - (4) as a series in the

Chebyshev polynomials of the first series. To do this, we map each element [1];1;1] on the interval [—1,+1]
using the following replacement of the independent variable:

m |
77=7‘+§‘y,m,-=?7,-+77,-_1,|j=77]+77,-_1 (6)

Jidenotes the length of the jth element. After this transformation, equation (3) takes the form
2 -
Dy, —ik; Rej[uj((y) - A)D, _Uj(Y)]l//,- =0, (7)
j=12,...N

where

d? I I

D, —k?,k, =~k,Re, = Re
2 J

J_dy?
From conditions (4) - (5) we have
d _ _
v, (-)=0, d‘gl 0.1 () =1, (D),
t=0123;j=12,.,N -1, ®)

d
vy (+D) =0, 2N (+1) =0
dy
We will seek an approximate solution to problem (7) - (8) at each of the elements in the form

P, _
wi(y)=>.aT, (y),
n=0

Pj ) )
U, (y?) =D bIT, (v{?) )

n=0
1) = (cos(al/ p;), =012,..., pj; j=12,...,N

where 7,(y) are Chebyshev polynomials of the first kind, yl‘” are their nodes, ap; is the number of

polynomials used to approximate the solution on the ;- grid element. The expansion coefficients brfj) for the

function U(y) in (9) are determined by the following inverse transformation [7-12]:

) 2 b1 . .
(N — (N (N —
bn - Z_Uj(yl )Tn(yl )1n_0111---1pj1
C 1=0C
jon |
ao=cy=2,atm# 0,p,j=1,2,.,N.
For the convenience of presenting the SSM, we write equation (7) in operator form, i.e.
Lywy=0,=12,.,N, (10)

where Z;is the differential operator defined by the formula

L, =D’ —ik,Re,|U,((y) - 2)|D, —U’(y)

€2 2020 EPRA I1JRD Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |425 |



-~

Ak
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)
EPRA International Journal of Research and Development (IJRD)
Volume: 5 | Issue: 9 | September 2020 - Peer Reviewed Journal

Substituting series (9) into equation (10), we require that the left-hand side of (10) on each of the grid
elements be orthogonal to the first (p;—4)—m Chebyshev polynomials, i.e.
Ly, T)=0,n=0,1,..pi—4,=12,..N (11)

where (T,0) = fllf (x)g(x)(L— XZ)_% dX is the scalar product on the interval [—1,+1]. In addition,

we require that the series in Chebyshev polynomials (9) exactly satisfy the boundary conditions and continuity
conditions (8). Taking into account the following properties of the Chebyshev polynomials

Tn (il) = (il) " and Tn’(il) = (il) i n2 , these conditions are written in the form [22-23].

Thus, to determine m =Mp;t+1) unknowns aﬁ” (n =0,1,...,pj, j =1,2,...,N), we have m =

Mp;+1) equations. These equations are: Mp;—3) - orthogonality equations (11), 4(N-1) - continuity conditions,
and 4 boundary conditions. In the general case, when different numbers of Chebyshev polynomials are given on
different elements, we obtain m = (p1+ p»+ ... + py+ N) equations for determining the same number of
unknowns. It is convenient to write the resulting system in matrix form:
(A-AB)x=0 (12)

The complex matrices A and B have a block-diagonal structure, and the vector x contains the coefficients

arf” in the expansion (9), i.e.
X" =(@?,a,...a,a%,a?,...a2,...a",aM,..al,

It is seen that the matrix is degenerate and contains 4N zero rows corresponding to the boundary
conditions and continuity conditions, since they do not depend on A. The corresponding rows of the matrix will
contain integers obtained from the values of the Chebyshev polynomials and their derivatives up to the third
order at the points —1 or 1. It is impractical to store these integer elements in the complex matrix; moreover, in
the complex matrix, the elements corresponding to these rows are equal to zero. Therefore, when compiling a
program, complex matrices and are described as follows:

A( m-4N,m ),B( m-4N,m ) where m is the total number of equations in the algebraic system (12),
and Nis the number of grid elements in the SSM.

With the help of elementary transformations of columns of matrices and system (12) we will bring to the

form [16-23]
(AQ-1BQ)(Q-1x) =0, 13

(AQ-/BQ)Y =0, 14)

or

where Y= Qlx,

@ (1) @ 3 (2) (2) (N) (N) (N)
(y 1--1yp11 0 ! 1t Y po 1 . 1ypN1

and Qs the corresponding non-degenerate transformation [15-23].

With such a transformation Q, the zero rows of the matrix B do not change, and the nonzero rows are
transformed according to the transformation Q. As a result, a number of equations in system (14) become
autonomous:

1.y =01-yP =0,4-yP =0,24-y¥ =
1.y®=01.y® =04y =0,24- y<2>

1.y =01-y™ =0,4-y™ =0,24-y" =

From this we can see that the first four components of the eigenvector from each grid element are equal
to zero,
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(()l) 0 y(l) O y(l) 0 y(l)
(()2) O y(2) y(2) y(2)

(()N) 0 y(N) O y(N) 0 y(N) 0
Then the first four rows and the first four columns can be excluded from each block of matrices AQ and
BQ. The remaining equations give the algebraic system

(T — AW)Y =0,
Y =Q7, (15)
1 1 2 2 4 4
x=(af,.,aa?,.. a7, a"..al,

where W is generally a nondegenerate square matrix. Then the order of the matrices 7 and W will be as
follows: (M —4N)* (M —4N), where M is the total number of polynomials in the SSM, i.c.

m=>.(p, +)..

The Q transformation is used to zero out some elements of the equations obtained from the boundary
conditions and continuity conditions. For clarity, these conditions are written in matrices A and B. The
transformation Q corresponding to the boundary conditions and continuity conditions is formed separately
from the matrices A and B. The transformation Q is mainly focused on reducing equations with the
corresponding boundary conditions and continuity conditions of block-diagonal form. Multiplying (15) on the
left by the matrix WD | we obtain

(D-AE)Y=0,D= TWD, (16)

The eigenvalues of system (16) can be found by standard methods. In this work, they were determined
using the QR-algorithm. Formations Q are the number of rows and columns of complex matrices and are
reduced by 4N, where N is the number of grid elements. At the same time, the high accuracy of the method
remains.

RESULTS AND DISCUSSION

Let the main flow {(y) in (3) be the Poiseuille flow in a flat infinite channel, i.e. A{y) = 1 — j2. In this
case, the characteristic length L is the channel half-width, and the characteristic velocity is the average velocity
Uh, of the main flow. The Reynolds number is determined by the formula Re= p Uy L/, where p is the density,
4 1s the viscosity of the gas. Boundary conditions (4) for disturbances in the Poiseuille flow have the form

W@nzaﬁﬂﬁnza 17)
dy

Equalities (17) express the usual requirements for impermeability and adhesion. For numerical
modeling (3), (17), the above-stated spectral-grid method (SSM) was applied.

The calculation of the spectrum of the Orr-Sommerfeld equation, as well as the calculation of the
critical Reynolds number for the Poiseuille flow using the spectral method was carried out in [8], and using the
spectral-grid method was carried out in [15, 19, 21]. In these works, using 32 Chebishev polynomials for & =
1,Re= 104, the eigenvalue for the unstable mode was found with a high accuracy

A=10.23752649 + 0.003739671,
moreover, the exact knowledge of this mode is
A=0.23752649 + 0.003739671.

The works [15, 19, 21] illustrate the high accuracy and efficiency of the spectral-grid method.

At the same time, in [24], using a difference scheme of the sixth order of accuracy with nodes uniformly
spaced relative to the stretched coordinate, the same unstable mode was found with an accuracy

A=0.23752964 + 0.00374248.
with 43 knots as well

A=10.23752650 + 0.003739691.
with 100 mesh points. On a uniform grid, the same scheme gives

A=0.2370744 + 0.003756201.
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with 43 grid points. In [9], it was found
A=0.237413 + 0.0036811

using 50 terms of the expansion in symmetric functions.

The results obtained by the spectral-grid method with an accuracy of 7 digits are obtained when using in
the approximation such a number of polynomials, which is more than 2 times less than the number of grid
nodes in finite-difference methods required to obtain the same accuracy. Taking into account that the matrix
methods for finding eigenvalues used both in [9] and [24] require time proportionally to the cube, and memory
is the square of the number of polynomials (functions, grid points), the spectral-grid method is much superior
to other methods in efficiency.

The eigenvalues and own functions of the Orr-Sommerfeld equation were calculated for various
Reynolds numbers lying outside (A;<0) on (A;= 0) and inside (A;>0) the neutral curve (A;= 0). The results are
shown in tables 1; 2, in table 2 for comparison, some results of work [25] are given.

Table 1
Re K 7Lr 7(,‘
10000 1 0.2375265 0.0037397
6000 1.02071 0.2622475 0.0003575
5772.22 1.02056 0.2640017 0.0000000
5772.12 1.02071 0.2640200 -0.0000002
5250 1.02071 0.2683958 -0.0009652
6000 0.848 0.2398535 -0.0050281
6000 0.875 0.2436641 -0.0033966
Table 2
Re K Article [25]
Ar Ai
6000 1.02071 0.2623 0.0003
5772.12 1.02071 0.26402 0.000
5250 1.02071 0.2684 -0.0010

To numerically simulate the amplitude of the stream function for perturbations, one should calculate the

vector Q- Dx for system (13), and thus, the components of the eigenvector
T 1 N
XT=(@?,...afy,

Then, using these components, sums (9) are calculated and the amplitude of the stream function for
disturbances in the Poiseuille flow is determined. The graphs of the stream function amplitude for disturbances
of an unstable symmetric mode for the Poiseuille flow at Re=6 - 103 and k& = 7.02071 in Fig. 1 and at Re= 104
and £ =/ in Fig. 2

' . ‘_

|
.;)
[
)
|
]

[hge-

Fig. I Change in the amplitude of the stream function  Fig. 2 Change in the amplitude of the stream function
at Re =6 x 10 and k=1.02071 at Re =10¥ and k=1
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The calculations performed once again demonstrate the high accuracy and efficiency of the spectral-grid

method.
CONCLUSIONS

1. An algorithm of the spectral-grid method for calculating the amplitude of the stream function has been
developed. [6]

2. The eigenvalues and own functions of the plane Poiseuille flow are obtained for various Reynolds
numbers and wave numbers. It is shown that the spectral-grid method is very effective in comparison
with other methods for solving the problem of hydrodynamic stability.

3. The amplitudes of the stream function for disturbances are investigated and their graphs are plotted.
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