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ABSTRACT 

For mathematical modeling of linear wave systems, numerical methods are increasingly being used. At the same 

time, their application to the solution of evolutionary problems with large gradients described by non-stationary 

partial differential equations run into serious difficulties. The spectral - grid method is applied for numerical 

modeling of initial - boundary value problems for heat conduction equations. The performed numerical 

calculations show a high computational efficiency of the spectral - grid method. 
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efficiency.  

 

INTRODUCTION 
The heat equation is a second-order partial differential equation that describes the temperature 

distribution in a given area of space and its change in time. 
One of the most characteristic properties of wave movements is that they continue to exist even after the 

elimination of the causes that cause them [1-8]. Waves usually persist for a long time and can transmit 
disturbances over very long distances. In fact, waves acquire their most characteristic shape precisely after 
propagation to a "large" distance from the region in which they "originated". One of the important and difficult 
mathematical problems is related to the description of the behavior of low-amplitude waves that undergo weak 
dissipation over long time intervals. 

Self-oscillating systems occupy a special place among linear systems [9-15]. Self-oscillating systems are 
clocks, lamp generators of electromagnetic oscillations, steam engines and internal combustion engines, in a 
word, all real systems that are capable of performing continuous oscillations in the absence of periodic external 
influences. 

MAIN PART 
One of the important and difficult mathematical problems is related to the description of the behavior of 

low-amplitude waves that experience weak dissipation over long time intervals [1]. These restrictions are not as 
special as they might seem at first glance. Since, as follows from observations, waves are indeed able to exist for 
a long time outside the sources, the limitations associated with the assumption of low dissipation and large time 
intervals are quite natural. In gas dynamics, there is weak dissipation, characterized by the dimensionless 

parameter 
1Re
, where Re  is the Reynolds number. In this case, the magnitude of the amplitude of wave   is 
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small, but finite. In cases of greatest interest, the corresponding linear equation should be considered at time 

intervals of the order of 
1 . 
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We divide the interval of integration  ba,  into M  different elements: 
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where a0 , bM  . To represent the approximate solution in the form of series in Chebyshev 

polynomials, each element  ii  ,1
 of integration interval  ba,  is mapped to interval  1,1  using the 

following replacement of the independent variable 
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here 
1 iiim  , 

1 iiik   is the length of the i -th mesh element and  1,1y . After this 

transformation, problem (1) - (3) takes the form: 
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where the equations (6) - (7) of the approximate solutions of continuity requirements and its first 
derivative in the internal nodes of the grid, equation (8) - form of the initial data (initial data for the future 
position of fundamental importance and have therefore not considered). 

An approximate solution of equations (5) - (8) will be sought in the form of series in Chebyshev 

polynomials of the first kind )(yTn
 [8-15]: 

For this, we introduce matrix notation as follows. Replace in (5) - (7) taking into account the derivatives 
by the expressions: 
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where v  is the vector of length MN )1(   with components: 

 ),()...()...,(),()...(),()...( 003202101 NMMNN yuyuyuyuyuyuyuv   (12) 

in Â  and B̂  - square matrices of dimension      MNMN 11   with block-diagonal structure. 

where Â  and B̂  denote the following matrix products: 

*ˆ*,ˆ TRTBTPTA  .  (13) 
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where T  is the matrix for Chebyshev polynomials of the first kind, *T  is the inverse matrix T , P  and R  

are the matrices of the first and second spatial derivatives. T , *T , P  and R  are block-diagonal matrices of 

dimension      MNMN 11  . 

We also introduce matrices A
~

 and B
~

: 

BKBAKA ˆ~
,ˆ

~ 2  ,  (14) 

where K  is a diagonal matrix. 

Writing differential equations (5) only at the interior points of elements  1,...,1  Nl , conditions (6) 

and (7) at the boundary points of neighboring elements, and (8) at the boundary points of the interval, we arrive 
at the following system: 

Av
dt

dS
 ,  (15) 

0Dv .   (16) 

Here S  is a vector of length  MN 1 : 

 ,0),()...(,0)...,(,0,0),()...(,0,0),()...(,0 111312121111  NMMNN yuyuyuyuyuyuyuS  (17) 

matrix A  of dimension      MNMN 11   and matrix D  of dimension   MNM 12   are: 
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The coefficients of each shaded block matrix A  coincide with the corresponding coefficients of matrix 

A
~

. As for matrix D , its first and last rows contain the coefficients of conditions (8), the remaining even rows 

 1,...,2,2  Mjjl  contain the coefficients of equations (6), and odd  Mjjl ,...,2,12   — 

the coefficients of equations (17) (corresponding rows of matrix 6). 

System (15) - (16) is "differential-algebraic" - it contains  MN 1  ordinary differential equations (14) 

and M2  linear algebraic conditions (16) with  MN 1  unknowns. Let us show that it can be reduced to two 
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autonomous systems of equations: a differential system of a smaller order  MN 1  only at the interior points 

of the interval and an algebraic system of the standard form bAx   for the remaining components of the 

solution (at the boundary points of the elements). 

Let us denote by jVYX ,,  and jW  combinations of variables in conditions (15) and we will consider 

them as new dependent variables: 
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then vector 

       

    YyuyuWVWV

yuyuWVyuyuXw

NMMMM

NN

,...,,,...,,

,...,,,...,

111122

1212111111




  (19) 

coincides with S  from (18) and is related to v  from (12) by the relation: 

Gvw  .   (20) 

Here G  is a nondegenerate matrix of dimension      MNMN 11  . 

In which rows with numbers )1,...,1()1(  MjNj  are rows of matrix D  with numbers 

)1,...,1(2  Mjj , and rows )1,...,1(1)1(  MjNj  are its rows with numbers 12 j . 

We also introduce the notation: 

,ˆ 1 AGH   (21) 

in which (14) takes the form: 

wH
dt

dw ˆ ,  (22) 

Thus, it can be seen from (22) that the system of ordinary differential equations (14) has been reduced to a 

system of lower dimension, and with a nondegenerate matrix H  (all zero rows and all columns are excluded 

from matrix Ĥ , whose elements are multiplied by the corresponding zero elements of vector w ) : 

Hr
dt

dr
 ,  (23) 

Here the dimension is      11:  NMNMH , and  

 ,)()...(,),...()...(),()...( 1112121111  NMMNN yuyuyuyuyuyur  

are vectors of length   1NM , moreover, the r  vector differs from the vector v  only by the absence of 

components numbered   11  Nj  and jN , where Mj ,...,1 . The missing vector components are found 

by solving the linear algebraic system (20). 
The system of equations (23) is evolutionary. For its numerical solution in this work, as already 

mentioned, the method [16,17] was used. Namely, for the transition to the next time layer, an explicit scheme of 
the form was used: 
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where matrix Q  is obtained using special transformations of system (23) - see [16], R  is the operator of the 

third-order Adams-Bashfort scheme, E  is the unit matrix,   is the integration step. The use of scheme (24) in 

comparison with the usual Adams-Bashfort scheme makes it possible to significantly weaken the restrictions on 
  associated with the requirements for its stability. 

Thus, the sequence of calculations is as follows: 

1) The region of integration is divided into a certain number of elements M ; 
2) A one-step algorithm (for example, the Runge-Kutta method) finds a solution on the first two time layers: 

 2,  tt ; 

3) A number of non-degenerate transformations of matrix H  are carried out in order to weaken the stability 
condition; 
4) According to the formula (24), the transition to a new time layer t  is carried out; 

5) The components of the vector v  at the boundary points of the elements are found from the solution of the 

algebraic system (20). 

 
RESULTS AND DISCUSSION 

The constructed algorithm was applied to calculations of one-dimensional initial-boundary value 
problems for heat conduction equations. 

In the case of the heat equation: 

2
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a comparison was made with the analytical solution for error rates: 
absolute: 
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and relative: 

 


tu jr
j

,max


 ,   (27) 

where   tur ,  and    tu ,  are, respectively, a numerical and analytical solution at a fixed moment t . 

The initial conditions at time 0t  were chosen in the form of a Gaussian distribution normalized to 1. The 

exact analytical solution in this case has the form: 
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Constant 0t  determines the half-width of the initial distribution: 

the less 0t , the narrower it is. Everywhere in the calculations: 15.00 t , 01.0,32,10 2    n . 

Integration interval is selected  1,1 . For a given half-width of the initial distribution, function (28) at the 

boundary points is equal to zero with an accuracy of 
1210

. Therefore, equation (28) was solved under the 

following boundary conditions: 

  0,1  tu ,  (29) 
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Fig.1 

Figure 1 shows the evolution of the numerical solution of problem (25), (29), found using the constructed 

method in the case when the region of integration was not divided into elements  1M . Solid curves 1, 2, 3 

correspond to the numerical solution at times  400,40,0t . Dotted curves 2, 3 correspond to the exact 

solution (28) at the same time instants. It can be seen that when using Chebyshev polynomials, the nodes on the 
interval are not rationally located - they thicken towards the edges of the interval, while only 14% of the nodes 
are in the region of rapid solution change. As a result, the solution accuracy turns out to be low: 

  and   are of order 
110
 (see Table 1). 

 
Fig.2 

Figure: 2 shows the evolution of the numerical solution of the same problem for the case when the region 

of integration was divided into 2 elements:    1,0,0,1 . This division is more successful - about 30% of the grid 

nodes fall into the inhomogeneity region. The accuracy in this case is 2 orders of magnitude higher (see Table 
2); therefore, the solid curves (numerical solution) and dashed curves (exact solution) in Fig. practically 
indistinguishable. 

 
Table 1. 

Calculation results 
t  0.01 0.1 0.4 2.0 4.2 
  2102   110  1102   2109   2106   
  2102   110  1103   1103   1102   
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Table 2. 
Calculation results 

t  0.01 0.1 0.4 2.0 4.2 
  2102   3105   3102   4107   4105   
  2102   3106   3104   3103   3102   

 

CONCLUSIONS 
1. A spectral-grid explicit method for solving evolutionary problems with large gradients is constructed. 

Depending on the location of the regions of inhomogeneity, the integration interval is divided into a 
finite number of elements. On each of the elements, spectral approximation by finite series in basis 
functions is used. 

2. Concrete calculations for the heat conduction equation have been performed, and a comparison has 
been made with the single-element pseudospectral method. 

3. It is shown that the use of the spectral-grid approximation makes it possible to significantly increase 
the accuracy of calculations without increasing the total number of basis functions. 
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