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ABSTRACT 
In this work we studied some rustles that related with uncertain measure and this kind of measure is the first basic 

idea for   uncertainty theory which found in (2007) and refined in (2010) by Prof. B. Liu, also we introduced 

some of the new properties for uncertain measure in addition we introduced the idea of continuous uncertain 

measure.  

 

INTRODUCTION 
Some information and knowledge are usually represented by human language like "about 

100km", "approximately 39
o
C", "roughly 80kg", "low speed", "middle age", and "big size". 

How do we understand them? Perhaps some people think that they are subjective probability 

or they fuzzy concepts. However, a lot of surveys showed that those imprecise quantities 

behaved neither like randomness nor like fuzziness.In other words, those imprecise quantities 

behaved cannot be quantified by probability measure (Kolmogorove in 1933), capacity 

(Choquet in 1954), fuzzy measure (Sugeno in 1974), possibility measure (Zadeh in 1978), 

and credibility measure (B.Liu and Y.Liu in  2002). In order to develop a theory of uncertain 

measure, (B.Liu) defined a new measure, (B.Liu) founded an uncertainty theory that is a 

branch of mathematics based on normality, self-duality, countable subadditivity and product 

measure axioms [9]. 

This work consists of introduction and two chapters. In chapter one, we recall some basic 

definitions of sigma field, probability measure uncertain measure, uncertain variable, Also, 

we recalled first basic some properties of uncertain measure. Chapter two is devoted to 

continuous uncertain measure and it's Properties. 

Chapter 1 

In this chapter, we gave some basic definitions, properties, results and some of the basic 

concepts that related with uncertain measure. In section one, we defined (Sigma field) and 

recalled some of the applications and theorems that related with it. In sections two, we 

recalled the definition of the uncertain measure and recalled some of the applications and the 

first properties for it. 
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§(1.1) Sigma Field 

Definition (1.1.1)[1,10] 

A family F  of subsets of a set  is called a  -field ( -algebra) on a set  ,if 

(1) F  

(2) If FA ,then FAc   

(3) If ,2,1,  nFAn ,then 





1n

n FA   

A measurable Space is a pair ),( F , where   is a set and F  is  a  -field on  . A subset 

A  of   is called measurable (measurable with respect to the -field F ), if FA , i.e., any 

member of F is called a measurable set. 

 It is clear to show that  

(1) F :  for F  and Fc  .  (2) If ,2,1,  nFAn ,then  





1n

n FA , 

FAnn
n




suplim  and FAnn
n




inflim .  (3) If FAAA n ,...,, 21 , then 
n

i

i FA
1

  and 


n

i

i FA
1

  

Example (1.1.2)[1,10] 

(1) The family   ,F  is a  -field on  . (2) The family F  of all subsets of a set   is a 

 -field on . (3) The family F  of all finite subsets of R  is a  -field on R  iff   is 

finite.(4) The family F  of all bounded subsets of R  is not a  -field on R .(5) If A  is subset 

of a set of  , then   ,,, cAAF   is a  -field on . 

Theorem (1.1.3)[1] 

If  
F  be an arbitrary family of  -field  on a set   with  , then 






FF  is a  -

field on    . 

 

 

Definition (1.1.4)[1] 

 Let  G  be a family of subsets of a set  . The smallest  -field containing G called 

the  -field generated by G  and it is denoted by )(G  
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 It is clear to show that(1) )(G = intersection of all  -fields on  , which contain G . 

(2) GG )(  iff G  is  -field on  . 

Definition (1.1.5)[1] 

Let ),(   be a topological space. The  -field generated by   is called the Borel  -

field and it is denoted by )( , i.e. )()(   . The member of )(  are called Borel 

sets of  . 

Definition (1.1.6)[1] 

Let  G  be a family of subsets of a set  , and let A . The restriction (or  trace) of 

G  on A  is a collection of all sets by the form BA , where GB , and it is denoted by 
AG  

(or GA )  

 GBBAGAGA  :                                

AG  is a family of subsets of A . The  -field )( AG generated by 
AG  some time denoted by 

)( GAA  , i.e., )()( GAG AA   

Theorem (1.1.7)[1] 

Let G  be a family of subsets of a set  , and let A  

(1) )(GA   is a  -field on A .  (2) )()( GAGA    (3) If G  is closed under finite 

intersection and GA , then  ABGBGA  :  (4) If G  is a  -field on  , then 
AG  is a 

 -field on A . 

Definition (1.1.8)[1] 

Let iF  be a  - field of subsets of i , ni ,,2,1  , and let 



n

i

i

1

. A measurable 

rectangle in   is a set 



n

i

iAA
1

, where ii FA   for each  ni ,,2,1  . The smallest  - 

field containing  the measurable rectangle is called the product  - field, and denoted by 




n

i

iF
1

. If all iF  coincide with fixed  - field, the product  - field is denoted by nF . 

§(1.2) Uncertainty Space 

Definition (1.2.1)[1] 

 A measure on a  -field F  is a non-negative, extended real valued function P  on F

such that whenever  ,...,,, 21 nAAA   form a finite or countably infinite collection of disjoint 

sets in F , we have  )()(
11











n

n
n

n APAP                                       (1.1) 
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 If PP ,1)(   is called a probability measure. 

  A measure space is a triple ),,( PF  where   is a set, F  is a  -field on   and P  is a 

measure on F . If P  is a  probability measure, ),,( PF  is called probability space. 

 If ),,( PF  is a probability space, the set   is called the sample space, the subsets  of   

which belong to F  are called events. 

Definition (1.2.2)[7] 

 Let ),( F  be a measurable space. A set function RF :  is said to be an uncertain 

measure on F  if it satisfies the following axioms: 

Axiom 1.(Normality Axiom) :  1)(   for the universal set  . 

Axiom 2.(Self-Duality Axiom): 1)()(  cAA   for any event A . 

Axiom 3.(Countable Subadditivity Axiom): For every countable sequence of events  nA , 

we have  

  









11

)()(
n

n

n

n AA                                                               

An uncertainty space is a triple ),,( F  where   is a set, F  is a  -field on  ,   is a 

uncertain measure on F .In 2009, Liu proposed the fourth axiom of uncertainty theory called 

product measure axiom.                                                                                

Axiom4.(Product Measure Axiom): Let ),,( kkk F   be uncertainty spaces for 

nk ,,2,1  . Then the product uncertain measure   is an uncertain measure on the product  

- filed nFFF  21  satisfying : 

      nkFAAA kkkk

n

k

k ,....2,1,:)(min)(
1




                       

That is, for each event nFFFFA  21 , we have   















wo

A

.,5.0

5.0,1

5.0,

)( 



                                                     

where  
  

  c

nkk

nkk

AAAAnkA

AAAAnkA









21

21

:},,2,1:)(minsup

,:},,2,1:)(minsup
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Remark (1.2.3)[2] 

        Probability measure satisfies the above three axioms, probability is not a special case of 

uncertainty theory because the product probability measure does not satisfy the product 

measure axiom. 

 (4) If Example (1.2.4)[5,7] 

       Let  cba ,, .              ,,,,,,,,,, cbcabacbaF   

Define RF :  by 

     
      1)(,4.0),(,7.0),(,8.0),(

,2.0)(,3.0)(,6.0)(,0)(









cbcaba

cba
 

Then   is an uncertain measure because it satisfies the four axioms. 

And  

(1)If    caAbaA ,,, 21  ,then    bAAaAAAA c  212121 ,, , and  

  
     

)()()(

8.0),()(,9.03.06.0)()()()(

21211

12121

c

c

AAAAA

baAbaAAAA








  

  

 

   

)()()()(

5.17.08.0),(),()()(

6.16.01)()()()(

212121

21

2121

AAAAAA

cabaAA

aAAAA













 

(2) If    bAaA  21 , , then  21 AA , and 

   
     

     )()(),()(

9.03.06.0)()(,8.0),()(

21

21

babaAA

babaAA








 

(3) If  aA 1
,  caA ,2  , then 

21 AA   and  cAA  12
 

 
)()()(

1.06.07.0)()(,2.0)(

1212

1212

AAAA

AAAA








 

 aA 1
,   bA 2

, then  

 

)().()(

18.0)().(

0)()(

2121

21

21

AAAA

AA

AA













  

Example (1.2.5)[7] 

       Suppose that RRu :  is a nonnegative function satisfying   1:)()(sup  yxyuxu  
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Then for any set A of real numbers, the set function 

 

 








,:)(sup1

,:)(sup
)(

cAxxu

Axxu
A  

if

if
 

 
  5.0:)(sup

5.0:)(sup





Axxu

Axxu
       

is an uncertain measure on R . 

 Ans: 

 Step1: We prove the normality ,i.e., 1)( R .the argument breaks down into two cases . 

Case 1: Assume   5.0:)(sup  Rxxu .but this is impossible because 

  1:)()(sup  yxyuxu ,then 1)( R . 

Case 2: Assume   5.0:)(sup  Rxxu .then )(R  cRxxu  :)(sup1  

  1sup1     

Step2:We prove the self-duality ,i.e., 1)()(  cAA  . the argument breaks down into two 

cases . 

Case 1: Assume   5.0:)(sup  Axxu . 

Then )(A  Axxu :)(sup   

)( cA  ))((:)(sup1 ccAxxu  )(1 A . 

Case 2: Assume   5.0:)(sup  Axxu . 

Then )(A  cAxxu  :)(sup1  

)( cA  ):)(sup1(1 cAxxu  )(1 A  

Step3:We prove the countable subadditivity of  . For simplicity, we only prove the cases of 

two events 
1A  and 

2A . the argument breaks down into two cases . 

Case 1: Assume 5.0)( 1 A  and 5.0)( 2 A . 

Then 5.0)( 21  AA . But since   1:)()(sup  yxyuxu ,  

Then )()()( 2121 AAAA   . 

Case 2: Assume 5.0)( 1 A  and 5.0)( 2 AM .When 5.0)( 21  AA , since 

  1:)()(sup  yxyuxu  

then )()()( 2121 AAAA   .   
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Example (1.2.6)[7] 

         Suppose RRu :  is a nonnegative and integrable function such that  
R

dxxu 1)( . 

Then for any Borel set A  of real numbers, the set function 

















 



wo

dxxuifdxxu

dxxuifdxxu

A
cc AA

AA

.,5.0

5.0)(,)(1

5.0)(,)(

)(                               

is an uncertain measure on R . 

Ans: 

By the same answer of example (1.2.5). 

Example (1.2.7)[7] 

       Suppose RRu : is a nonnegative function and RRv : is a nonnegative and 

integrable function  such that  

   
A

dxxvAxxu 5.0)(:)(sup  and |or    
cA

c dxxvAxxu 5.0)(:)(sup  

for any Borel set A  of real numbers. Then the set function  

















 



wo

dxxvAxxuifdxxvAxxu

dxxvAxxuifdxxvAxxu

A
cc A

c

A

c

AA

.,5.0

5.0)(}:)(sup{,)(}:)(sup{1

5.0)(}:)(sup{,)(}:)(sup{

)(      

is an uncertain measure on R . 

Ans: 

By the same answer of example (1.2.5). 

The first basic properties of an uncertain measure are collected in the following theorem. 

Theorem (1.2.8)[7] 

        Let ),,( F  be an uncertainty space, then 

(1) 0)(  . 

(2) If FAA 21 ,  and 
21 AA  , then  )()( 21 AA    

 (3) If FAAA n,,, 21  , then )()(
11





n

k

k

n

k

k AA   . 
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(4)   )()()()(),(max 212121 AAAAAA    for all FAA 21 , . 

(5)  )(),(min)(1)()( 212121 AAAAAA    for all FAA 21, . 

(6) 1)(0  A  for all FA .  

Proof : 

(1)Since 1)()(  cAA    for all FA  and c
 , then 1)()(    

011)(1)(    

(2)Since )()(1)()()(1 21212121 AAAAAAAA cc    

)()( 21 AA   . 

(3) Put kA  for all 1 nk   

}{ kA is a sequence of disjoint sets in F k

n

k

k

k

AA 
11 





  

)()()()()()()()(
1111111

















n

k

k

n

k

k

nk

k

n

k

k

k

k

k

k

n

k

k AAAAAAA    

(4) Let FAA 21 ,  

 since )()(),()(, 212211212211 AAAAAAAAAAAA    

  )()(),(max 2121 AAAA    

since  from (3) , we have )()()( 2121 AAAA    

hence    )()()()(),(max 212121 AAAAAA    for all FAA 21 ,  

(5) Let FAA 21 ,  

 (a) Since  )()()( 2121

cccc AAAA    

2)()())(1())(1()()()( 21212121  AAAAAAAA cccc   

1)()(2)()(1)(1))((1)( 2121212121  AAAAAAAAAA ccc 

 

Hence, )(1)()( 2121 AAAA    for all FAA 21 ,  

(b)Since )()(),()(, 221121221121 AAAAAAAAAAAA    

 )(),(min)( 2121 AAAA    
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Therefore  )(),(min)(1)()( 212121 AAAAAA   for all FAA 21 ,  

(6) Let FA  

Since    A , then )()()(   A  

Since 0)(  , 1)(  , then 1)(0  A . 

Chapter2 

In this chapter  we have reviewed Null-Additivity theorem and Asymptotic theorem . Also, 

we have defined continuous uncertain measure and recalled some properties that related with 

it. 

§(2.1) Sequences of Sets 

        Let }{ nx  be a sequence of real numbers. Define  

  1::supinfsuplim 


nnmxx mn
n

 and   1::infsupinflim 


nnmxx mn
n

 

If n
n

n
n

xx


 inflimsuplim , we say that the limit exists and write n
n

x


lim  

Definition(2.1.1)[1] 

        Let  An  be  a sequence of subsets of a set . The set of all points which belong to 

infinitely many sets of the sequence }{ nA is called the upper limit (or limit superior) of  nA  

and (in symbol  A ) and defined by 

 :{suplim nn
n

n AxAA 



 for infinitely many  















1

lim}
n nk nk

k
n

k AAn  

Thus,  

 Ax  iff for all n , then kAx  for some nk   

The lower limit (or limit inferior) of nA , denoted by 
A  is the set of all points which belong 

to almost all sets of the sequence }{ nA , and defined by :{inflim nn
n

n AxAA 



 for all but 

finitely many  














1

lim}
n nk nk

k
n

k AAn  

Thus, 

 Ax  iff for some n , then kAx  for all nk   

Theorem (2.1.2)[1] 

        Let nA   be  a sequence of subsets of a set .  
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(1) c

nn
nn

c

nn
n

AA inflim)suplim(


                             (2) c

nn
n

c

nn
n

AA suplim)inflim(


                              

(3) nn
n

nn
n

AA supliminflim


                               

Proof: 

Since 










1

suplim
n nk

knn
n

AA  

  



















11

inflim)())(()suplim(
n

c

nn
n

nk

c

k

n nk

k

c

nn

c

n
AAAA . 

 (2)Since k

nkn

nn
n

AA 










1

inflim  

c

nn
n

c

k

nkn

c

k

nkn

c

nn
n

AAAA suplim)())(()inflim(
11




















  . 

 (3)Since nn
n

nn
n

k

nkn

k

nkn

k

nk

k

nk

AAAAAA supliminflim
11



























  . 

Definition (2.1.3)[1] 

A sequence  nA of subsets of a set   is said to converge if          

AAA nn
n

nn
n




inflimsuplim  (say)                                  

And A  is said to be the limit of }{An , we write 
n

n

AA lim


  or AAn   

Definition (2.1.4)[1] 

        A sequence  nA of subsets of a set   is said to be increasing  if AA nn 1  for 

,2,1n . It is said to be decreasing if AA nn 1  for ,2,1n  . A monotone sequence of 

sets is one which either increasing or decreasing. 

Theorem(2.1.5)[1] 

       Any monotone sequence is converge. But the converse is not true. 

Proof: 

 Let nA  be a monotone sequence of subsets of a set  . 

If  nA  is an increasing AA nn 1   for ,2,1n  
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1n

n

nk

k AA   and 





nk

nk AA  for ,2,1n  

   






















1 1 11

)()(suplim
n nk n n

n

n

nknn
n

AAAA  and     














1 1

)(inflim
n nk n

nknn
n

AAA    Thus,   








1

inflimsuplim
n

nnn
n

nn
n

AAA   

Therefore the sequence nA  is converge, while, if  nA  is decreasing 

AA nn


1
 for ,2,1n  n

nk

k AA 




  and n

nnk

k AA 









1

for ,2,1n  

   






















1 1 11

)()(suplim
n nk n n

n

n

nknn
n

AAAA  and     














1 1

)(inflim
n nk n

nknn
n

AAA  

Thus   






1

inflimsuplim
n

nnn
n

nn
n

AAA . Therefore the sequence nA  is converge. 

Example (2.1.6)[1] 

Let R  and 













evenn
n

oddn
n

An

,)1,
1

[

,]
1

1,0(

   , then the  nA  is converge but not monotone.  

Remark (2.1.7)[1] 

        If nA is an increasing  sequence of subsets of a set   and AA
n

n 





1

, we say that the 

nA  from an increasing  sequence of a set with limit A , or that the nA  increase to A , we 

write  AAn  . Also If nA  is a decreasing  sequence of subsets of a set   and AA
n

n 





1

, 

we say that the nA  from a decreasing  sequence of a set with limit A , or that the nA  decrease 

to A , we write  AAn  .    

 

Theorem (2.1.8)[1] 

        Let  nA  be a sequence of subsets of a set   and  let A  

(1) If AAn  , then AA
cc

n                                         

(2) If AAn  , then AA
cc

n                                          
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 Proof : 

(1)  Since 1 nnn AAAA   for ,2,1n  and 





1n

n AA  

c

n

c

n AA  1  for ,2,1n  and 









11

)(
n

cc
n

n

c
n AAA AA cc

n
 . 

 (2) Since nnn AAAA  1  for ,2,1n  and  AAn

n







1

 

c

n

c

n AA 1      for ,...2,1n   and 
cc

n

cc

n

n

c

n

n

AAAAA 








)(
11

 . 

Theorem (2.1.9) (Null-Additivity Theorem)[7] 

  Let ),,( F  be an uncertainty space, and let  nA  be a sequence of events in F  with 

0)( nA  as n . Then for any FA , we have )()(lim)(lim AAAAA n
n

n
n

 


                            

Proof :  

  Since )()( nn AAAAAA    for each n , and since 

)()()( nn AAAA    for each n .  It follows that 

                               )()()()( nn AAAAA    

For each n . Thus we get )()( AAA n   by using 0)( nA .  

Since  ))(()( nnn AAAAAA   , we have 

)()()()( nnn AAAAAA   . 

Hence )()( AAA n    by using 0)( nA . 

Remark (2.1.10)[7] 

        It follows from the above theorem that the uncertain measure is null-additive, i.e., 

)()()( 2121 AAAA    if either 0)( 1 A  or 0)( 2 A . In other words, the uncertain 

measure remains unchanged if the event is enlarged or reduced by an event with uncertain 

measure zero. 

Theorem (2.1.11) (Asymptotic Theorem)[7]  

        Let ),,( F  be an uncertainty space. For any sequence  nA  of events in F , we have 
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0)(lim 


n
n

A  if nA  and 1)(lim 


n
n

A  if nA               

Proof :  

Assume nA . Since 





1n

nA   , it follows from the countable subadditivity  axiom that 







1

)()(1
n

nA . 

Since )( nA  is increasing with respect to n , we have 0)(lim 


n
n

A . If nA , then 

c

nA . It follows from the first inequality and self-duality axiom that 

1)(lim1)(lim 


c

n
n

n
n

AA   

which complete the proof. 

Example (2.1.12)[7]  

      Assume   is the set of real numbers. Let   be a number with 5.00   . Define a set 

function as follows, 






















A

boundedupperisA

unboundedupperareAandA

boundedupperisA

A

A
c

c

,1

,1

,5.0

,

,0

)(







                                   

It is easy to verify that   is an uncertain measure. Write ],( nAn  for ,2,1n . 

Then nA  and  


)(lim n
n

A . Furthermore, we have c

nA  and  


1)(lim c

n
n

A  . 

Theorem (2.1.13)[2] 

         Let ),,( F  be an uncertainty space. For any sequence  nA  of events in F , we have 

(1)If AAn  , then )()(lim AAn
n

 


.                                     

(2)If AAn  , then )()(lim AAn
n

 


.                                      

Proof : 

 (1)Since AAn  1 nn AA  for ,...2,1n , and AAn
n




1

  AAn   for ,...2,1n

)()( AAn    for ,...2,1n  
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so that )()(lim AAn
n

 


. 

(2)Since AAn     cc

n AA  )()(lim cc

n
n

AA  


)(1))(1(lim AAn
n

 


 

)()(lim AAn
n

 


. 

§(2.2) Continuous Uncertain measure and it's properties 

Definition (2.2.1)[3] 

        Let ),,( F  be an uncertainty space. We say that   is  

(1) continuous from above at FA , if )()(lim AAn
n

 


 whenever  nA  of events in F  

with AAn  . 

(2) continuous from below at FA , if )()(lim AAn
n

 


 whenever  nA  of events in F  

with AAn  . 

  is called continuous from above if it is continuous from above at A  for all FA , also   

is called continuous from below at A  for all FA . 

Theorem (2.2.2)[2] 

         Let ),,( F  be an uncertainty space. Then the following statements are equivalent: 

(1)   is continuous from above at FA .(2)   is continuous from below at FA . 

Proof: 

(1) (2) 

Let  nA  be a sequence of events in F  with AAn  , we have  cc

n AA    

0)()(lim 


 cc

n
n

AA . 

Since  

)()(lim)(lim)()()( cc

n
n

cc

n
n

cc

n

cc

n AAAAAAAA  


)()(lim0)(1)(lim10)()(lim AAAAAA n
n

n
n

cc

n
n

 


 

Since  

)()(lim)()(lim AAAA n
n

n
n

 


. That is   is continuous from below at FA . 

(2) (1) 
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Let  nA  be a sequence of events in F  with AAn  , we have 

1)()(lim 


 AAAA c

n
n

c

n
. 

Since )()(lim)(lim)()()( AAAAAAAA c

n
n

c

n
n

c

n

c

n  


 

)()(lim)()(lim11)()(lim1 AAAAAA n
n

n
n

c

n
n

 


 

Since )()(lim)()(lim AAAA n
n

n
n

 


. That is   is continuous from above at FA

. 

Theorem (2.2.3)[3] 

        Let ),,( F  be an uncertainty space. For any sequence  nA  of events in F . 

(1) If   is continuous from above, then )suplim()(suplim n
n

n
n

AA


  . 

(2) If   is continuous from below, then )inflim()(inflim n
n

n
n

AA


  . 

Proof: 

Since n
kn

A




  is an increasing sequence and kn
kn

AA 




 , we get  

)(suplim)(lim)lim()suplim( n
n

n
knn

n
knn

n
n

AAAA 









   

(2) Similarly n
kn

A




  is decreasing and nn
kn

AA 




 . Thus  

)(inflim)(lim)lim()inflim( n
n

n
knn

n
knn

n
n

AAAA 









  . 

Definition (2.2.4)[3,7] 

         Let ),,( F  be an uncertainty space.   is called continuous if for any sequence  nA  

of events in F with n
n

A


lim  exists, we have )lim()(lim n
n

n
n

AA


  . The triple ),,( F  is 

called a continuous uncertainty space if   is continuous. 

Theorem (2.2.5)[2] 

       Let ),,( F  be an uncertainty space. Then   is continuous if and only if it is 

continuous from above (or continuous from below ) . 

Proof: Suppose   is continuous from below, then    is continuous from above theorem 

(2.2.3), we have  
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)suplim()(suplim)(inflim)inflim( n
n

n
n

n
n

n
n

AAAA


   

Since n
n

A


lim  exists, we get the equation )lim()(lim n
n

n
n

AA


  . 

Example (2.2.6)[11] 

       Let RRgf :,  be two nonnegative functions such that  
R

dxxf 1)( , 

  0:)(inf  Rxxg  and 1)( xg  for any Rx . For any Borel set A  of real numbers, 

define a set function   as follows: 

   ):)(inf1:)((inf
4

1
)(

2

1
)( AxxgAxxgdxxfA c

A

   Then   is a continuous 

uncertain measure. 
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