

SJIF Impact Factor 2021: 7.13| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
 Volume: 6 | Issue: 2 | February 2021 - Peer Reviewed Journal

2021 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |185 |

CASE STUDY ON THE EFFICIENCY OF AN

EXECUTION OF NORMAL ARITHMETIC

EXPRESSION AGAINST AN EXECUTION OF

ARITHMETIC EXPRESSION IN LOOPING CONTROL

STRUCTURE IN COMPUTER LANGUAGE

6243 – Cadet M Caleb Gunalan
1

Class- XI 2020-21, Sainik School Amaravathinagar, Post: Amaravathinagar,

Udumalpet Taluka, Tirupur Dt, Tamilnadu State

ABSTRACT

In computer science arithmetic operators are used to perform various arithmetic operations. The system performs

particular operation depending on the type of the operator used in the expression.

 All computer languages support all basic types of arithmetic operators, but the representation, meaning

and order of execution of an operator in the expression solely depend on the basis of construction compiler or an

interpreter.

This manuscript specifically examines the execution of direct method of arithmetic expression or normal

arithmetic expression with an arithmetic expression using looping control structure in computer language, and to

check how these two methods behaves, further comparing the efficiency of the these two approaches.

KEYWORDS: Arithmetic Operators (AO), Unary Operators (UO), Binary Operators (BO), Runtime

Execution(RE), O(n) Big O, Θ(n) Big Theta, Ω(n) Big Omega.

1. INTRODUCTION
We have observed that in all the programming

languages operators are used to perform operations on
constant values and variables or in other words, operators
are the tokens that perform some computation when
applied to variable or constant values. The variables to
which the computation is imposed are called the operands.

The operators +, -,*, ÷ are most predominantly used
arithmetic symbols in day to day life as well as in the
computer system too. These operators are basic operators
used to perform basic mathematical operations like
addition, subtraction, multiplication and division
respectively. There are several additional operators such
as floor division operator, exponentiation operator,
remainder operator.

2. CLASSIFICATION OF OPERATORS
Operators can be classified as Unary Operators(UO) and
Binary Operators(BO). The unary operator are ‘+’ and ‘-
’. Always the unary ‘+’ precedes an operand. When the

two operands are involved in conjunction with the
operator, classifies binary operator(BO). For example the
two add two numbers we form an expression a+b, this +
operator acts as binary operator in the given expression.
The resultant of the expression will be the sum of two
values which are represented in the form of operands.
 This manuscript specifically examines the execution
of direct method of arithmetic expression or normal
arithmetic expression with an arithmetic expression using
looping control structure, and to check how these two
methods behaves, further comparing the efficiency of the
these two approaches.

3. RELATED WORK
Algorithm for adding two numbers using normal
arithmetic expression:
Step-1: Start
Step-2: import time module
Step-3: Start the time
Step-4: assign values to x & y

http://www.eprajournals.com/

SJIF Impact Factor 2021: 7.13| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
 Volume: 6 | Issue: 2 | February 2021 - Peer Reviewed Journal

2021 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |186 |

Step-5: Add x and y
Step-6: Print the output
Step-7: Stop the time
Step-8: Print the time taken
Step-9: Stop

Flowchart for adding two numbers using normal
arithmetic expression:

Snippet for adding two numbers using normal
arithmetic expression:
import time

start = time.time()

x=1

y=1

add=x+y

print("addition of two using + Operator number is

:",add)

end = time.time()

print("Runtime of the program is:", end - start)

ARITHMETIC EXPRESSION IN LOOPING
CONTROL STRUCTURE
Algorithm for adding two numbers using Looping
Control Structure:

Step-1: Start

Step-2: import time module
Step-3: Start the time
Step-4: Assign values to x & y
Step-5: Assign s as x
Step-6: if i is in range 1 to y+1
Step-7: s will be increased by 1
Step-8: go to step 6(repeat if condition is true)
Step-9: Print the output
Step-10: Stop the time
Step-11: Print the time taken
Step-12: Stop

Flowchart for adding two numbers using Looping
Control Structure:

Snippet for adding two numbers using
Looping Control Structure:
import time

start = time.time()

x=1000

y=1000000

s=x

ASSIGN S AS X

START

START THE TIME

ASSIGN VALUES TO X & Y

IF I

VALU

E

FROM

 S=+1

PRINT THE OUTPUT

STOP THE TIME

PRINT THE TIME

START

START

START THE TIME

ADD X AND Y

PRINT THE OUTPUT

STOP THE TIME

ASSIGN VALUES TO X & Y

P

PRINT THE TIME

START

P

http://www.eprajournals.com/

SJIF Impact Factor 2021: 7.13| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
 Volume: 6 | Issue: 2 | February 2021 - Peer Reviewed Journal

2021 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |187 |

for i in range(1,y+1):

 s+=1

print("addition of two number is using looping

structure :",s)

end = time.time()

print("Runtime of the program is: ",end-start)

4. RUN TIME EXECUTION (RE) OF NORMAL
ARITHMETIC EXPRESSION

5. RUN TIME EXECUTION (RE) OF
ARITHMETIC EXPRESSION IN LOOPING
CONTROL STRUCTURE

USING LOOPING CONTROL STRUCTURE

X Val Y Val Time

0001 0001 0.03

2000 5000 0.04

1000 10000 0.047

1000 100000 0.12

1000 1000000 0.61

6. SPACE COMPLEXITY AND TIME
COMPLEXITY

In computer science, analysis of algorithms is a
very crucial part. It is important to find the most efficient
algorithm for solving a problem. It is possible to have many
algorithms to solve a problem, but the challenge here is to
choose the most efficient one.[1]

There are multiple ways to design an algorithm, or
considering which one to implement in an application.
When thinking through this, it’s crucial to consider the

algorithm’s time complexity and space complexity.[2]

SPACE COMPLEXITY
The space complexity of an algorithm is the

amount of space (or memory) taken by the algorithm to run
as a function of its input length, n. Space complexity
includes both auxiliary space and space used by the
input.[2]

Auxiliary space is the temporary or extra space
used by the algorithm while it is being executed. Space

complexity of an algorithm is commonly expressed using
Big (O(n)) notation.[2]

The Space complexity is ignored in this research
paper, since the space complexity of particular problem is
not considered so important.

TIME COMPLEXITY
The time complexity of an algorithm is the amount

of time taken by the algorithm to complete its process as a
function of its input length, n. The time complexity of an
algorithm is commonly expressed using asymptotic
notations:[2]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)
It’s valuable for a programmer to learn how to

compare performances of different algorithms and choose
the best time-space complexity to solve a particular problem
in the most efficient way possible.[2]
Time Complexity for adding two numbers
using normal arithmetic expression:

Big O notation is used in Computer Science to
portrait the performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario
of an algorithm, and can be used to describe the execution
time required or the space used (e.g. in memory or on disk)
by an algorithm. here O stands for order of growth.

Time Complexity for adding two numbers in using
normal arithmetic expression (worst case scenario) is
calculated as:

O(3)
Whereas, Time Complexity for adding two

numbers using normal arithmetic expression (worst case

scenario) is calculated as:

O(n)

CONCLUSION

The performance of these two methodologies
exhibits that, the efficiency for calculating normal
arithmetic expression is slightly higher when it is compared
with the calculation time of arithmetic expression in the
looping control structure. Further the worst case analysis is
Big O (3) and Big O(n). In addition to this it is observed
that the execution of expression also depends on the
hardware configuration.

ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any

project depends largely on the encouragement and
guidelines of many others. I take this opportunity to express
my gratitude to the people who have been instrumental in
the successful completion of this project.

I express deep sense of gratitude to almighty God
for giving me strength for the successful completion of the
project.

USING NORMAL ARITHMETIC EXPRESSION

X VAL Y VAL Time

0001 0001 0.03

2000 5000 0.034

1000 10000 0.049

1000 100000 0.054

1000 1000000 0.05

http://www.eprajournals.com/

SJIF Impact Factor 2021: 7.13| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
 Volume: 6 | Issue: 2 | February 2021 - Peer Reviewed Journal

2021 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |188 |

I express my heartfelt gratitude to my parents for
constant encouragement while carrying out this project.

I express my deep sense of gratitude to the

luminary The Principal Capt (IN) Nirmal Raghu,

Sainik School Amaravathinagar who has been
continuously motivating and extending their helping hand
to us.

I express my sincere thanks to the academician
The Vice Principal Lt Col Nripendra Singh, Sainik

School Amaravathinagar, for constant encouragement
and the guidance provided during this project.

I am overwhelmed to express my thanks to The

Administrative Officer Lt Col Amit, Sainik School

Amaravathinagar for providing me an infrastructure and
moral support while carrying out this project in the school.

My sincere thanks to Mr. Praveen M Jigajinni,
Master In-charge, A guide, Mentor all the above a friend,
who critically reviewed my project and helped in solving
each and every problem, occurred during implementation of
the project

REFERENCES
1. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/

2. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity.

http://www.eprajournals.com/

