

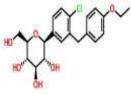
METHOD DEVELOPMENT AND VALIDATION OF DAPAGLIFLOZIN AND SAXAGLIPTIN BY RP-HPLC

Sana Tabassum¹, Dr.M.Sathishkumar², Dr.A.Mallik³, Dr.N.Jyothi⁴

^{1,2,3,4}Department of Pharmaceutical Analysis, Marri Laxman Reddy Institute of Pharmacy, Dundigal, Hyderabad-5000043

Article DOI: https://doi.org/10.36713/epra8448 DOI No: 10.36713/epra8448

Corresponding Author: Dr.M.Sathish kumar, V-Block Flat No.102, V-Block Flat No.102, Kompally (village), Telangana


ABSTRACT

For the coincident evaluation of Dapagliflozin and Saxagliptin in bulk form; Chromatography was run through Intersil-ODS C_{18} column (250mm× 4.6mm, 5micron) Mobile phase containing Methanol: Water was pumped through the column in the ratio of 45: 55. The flow rate was 1ml/min. The temperature help was ambient i.e., upto30°c. The optimized selected wavelength was 210nm. The retention time of Dapagliflozin and Saxagliptin was found to be 4.707min and 6.68 min respectively. The %RSD of Dapagliflozin and Saxagliptin was found to be 0.031 and 0.036 respectively. The values of LOD and LOQ obtained from Dapagliflozin and Saxagliptin was 0.56, 1.69 and 0.57, 1.74 respectively. The retention time was decreased and the run time also decreased, so the method development was simple and economical that can be applied successfully for simultaneous estimation of combination of two anti- diabetic drugs; Dapagliflozin and Saxagliptin.

KEY WORDS: Dapagliflozin and Saxagliptin, RP-HPLC.

INTRODUCTION

Method development and validation of Anti-diabetic drugs.i.e., Dapagliflozin and saxagliptin by Reverse phase-HPLC method by using Methanol and Acetonitrile as solvents. Dapagliflozin is an oral diabetics medicine that helps to control blood sugar levels, it helps the kidneys get rid of glucose from your bloodstream. It helps to treat type-2 diabetes along with diet and exercise. Saxagliptin is used as monotherapy or in combination to treat type-2 diabetes.

Saxagliptin

Dapagliflozin

SJIF Impact Factor 2021: 8.013| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016

EPRA International Journal of Research and Development (IJRD)

Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal

MATERIALS AND METHODS

Instruments-Instruments

- HPLC –Waters Model NO.2690/5 series Compact System Consisting of Inertsil-C18 ODS column.
- Electronic balance (SARTORIOUS)
- Sonicator(FAST CLEAN)

Substances containing chemicals

- Methanol HPLC Grade.
- Buffer(KH2PO4)Hplc Grade.

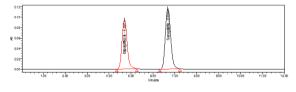
Raw Equipment(Unprocessed Materials)

Dapagliflozin and Saxagliptin are working standards.

RESULTS AND DISCUSSION.

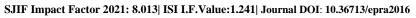
Method development: Method development was done by changing various, mobile phase ratios, buffers et

ADVANCED METHOD (OPTIMIZED METHOD)


Mobile Phase: Degassed Methanol and Buffer in the ratio of 45:55 V/V.

Preparation of pH 3.4 Phosphate buffer: 2.7218g of KH2PO4 was weighed and transferred into a 1000ml beaker, later it was dissolved and diluted to 1000ml with HPLC water and the pH was adjusted to 3.4 with orthophosphoric acid.

Chromatographic conditions that have been optimized


Parameters	Method		
Stationary phase (column)	Inertsil -ODS $C_{18}(250 \text{ x } 4.6 \text{ mm}, 5 \mu)$		
Mobile Phase	Methanol : Buffer (45:55)		
Flow rate (ml/min)	1.0 ml/min		
Run time (minutes)	12 min		
Column temperature (°C)	Ambient		
Volume of injection loop (µl)	20		
Detection wavelength (nm)	210nm		
Drug RT (min)	4.707min for Dapagliflozin and 6.684 for Saxagliptin.		

Standard chromatogram

Standard chromatogram

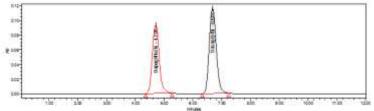
Inference: At RTs of 4.707 minutes for Dapagliflozin and 6.684 minutes for Saxagliptin, a chromatogram was obtained.

Volume: 6 | Issue: 9 | September 2021

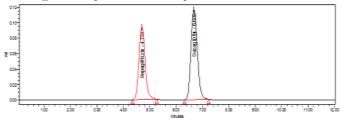
- Peer Reviewed Journal

S.NO	Name of the peak	Retention time(min)
1	Dapagliflozin	4.707
2	Saxagliptin	6.684

INFORMATION OF HIGH VALUE (VALIDATION DATA) PRODUCTS FOR THE SYSTEM (SYSTEM SUITABILITY)

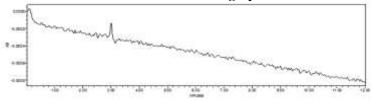

TABLE- 1(a): Data on Dapagliflozin System Suitability

Injection	RT	Peak Area	USP Plate count	USP Tailing
1	4.706	674753	10953.609752	1.153539
2	4.707	674261	10951.014286	1.155271
Mean	4.7078	678433.8	10768.34	1.155774
SD	0.001483	6031.135		
% RSD	0.031506	0.888979		

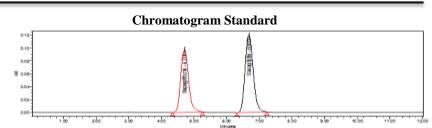

TABLE-1(b): Data on Saxagliptin System Suitability

Injection	RT	Peak Area	USP Plate count	USP Tailing
1	6.681	1218805	9478.317159	0.899633
2	6.680	1214014	9452.196217	0.893423
Mean	6.6826	1228593	9573.997	0.892407
SD	0.002408	122124.07		
% RSD	0.036039	1.800764		

System suitability chromatograms (standards)


Inference: Standard Chromatogram-1 System Suitability

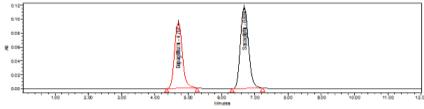
Inference: Norm Chromatogram-2 device appropriateness


DESCRIPTION(SPECIFICITY):

Blank Chromatograph

 Volume: 6 | Issue: 9 | September 2021
 - Peer Reviewed Journal

Inference: For Dapagliflozin, a Rt of 4.708min was obtained, while for Saxagliptin, a Rt of 6.682min was obtained.

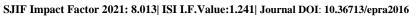

TABLE-2(i): Data of Repeatability	(System precision) forDapagliflozin
-----------------------------------	-------------------------------------

Concentration	Injection	Peak Areas of Dapagliflozin	%Assay
100ppm	1	674753	98.66
	2	674261	99.30
Statistical Analysis	Mean	678433.8	100.00
	SD	6031.135	1.107678
	% RSD	0.888979	1.10

TABLE-2(ii): Information on Saxagliptin Reliability (System Precise)

Concentration	Injection	Peak Areas of Saxagliptin	%Assay
100ppm	1	1218805	99.95
	2	1214014	100.24
Statistical Analysis	Mean	1228593	99.91
	SD	22124.07	0.35819
	% RSD	1.800764	0.35

Detailed chromatograms of systems

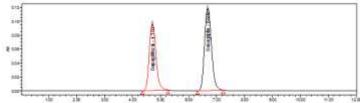


(standard-1)

(b)Method precision

TABLE-3(i): Data of Repeatability (Method precision) for Dapagliflozin

Concentration 100ppm	Injection	Peak Areas of Dapagliflozin	%Assay
	1	633495	98.55
	2	635992	98.88
Statistical	Mean	637312	99.278
Analysis	SD	5988.879	0.827236
	% RSD	0.0891	0.83


Volume: 6 | Issue: 9 | September 2021

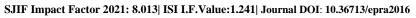
- Peer Reviewed Journal

FABLE-3(ii): Data of Repeatability (Method precision) for Saxagliptin					
Concentration 100ppm	Injection	Peak Areas of Saxagliptin	%Assay		
	1	1202110	98.6		
	2	1203700	99.02		
Statistical	Mean	1202687.6	98.48		
Analysis	SD	771.5483	0.352647		
	% RSD	0.1358	0.35		

Repeatability chromosomes (Repeatable Chromatograms) Inference: Chromatograph with high repeatability

(Standard-1)

Intermediate precision Table4: Data of Intermediate precision (Analyst 2) for Dapagliflozin


Concentration 100ppm	Injection	Peak Areas of Dapagliflozin	%Assay
	1	636792	99.99
	2	634360	99.66
	Mean	644607.8	100.37
<i>Statistical</i> Analysis	SD	6392.59	0.753536
2	% RSD	1.183	0.75

(ii)Specifications for Saxagliptin Intermediate (Analyst 2)

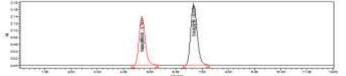
Concentration	Injection	Peak Areas of Saxagliptin	%Assay
100ppm	1	1205267	99.78
	2	1205625	99.95
	3	1205840	100.00
Statistical	Mean	1206333.5	100.19
Analysis	SD	12572.599	1.100898
	% RSD	1.24	1.09

Chromatograms of Intermediate Precision:Inference: 1

Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal

Resilience (ACCURACY)


(i)Dapag	gliflozin	data	with	accuracy	

Concentration % of spiked level	Amount added (ppm)	Amount found (ppm)	% Recovery	Statistical A % Rec	•
150% Injection 1	60	60.12	100.21	MEAN	99.97333
150% Injection 2	60	59.76	99.61		
150% Injection 3	60	60.06	100.10	%RSD	0.31

(ii)Saxagliptin data with accuracy

Concentration % of spiked level	Amount added (ppm)	Amount found (ppm)	% Recovery	Statistical Ai % Recovery	nalysis of
150% Injection 1	60	60.08	100.14	MEAN	100.02
150% Injection 2	60	59.97	99.96		
150% Injection 3	60	59.98	99.98	%RSD	0.09

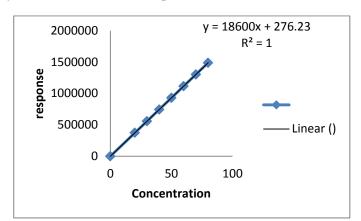
Chromatograms are used to ensure precision (150 per cent)

Inference: Standard 1 chromatogram

Variability (LINEARITY):

TABAL 6:Data of Linearity (Dapagliflozin)

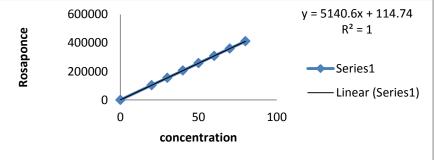
Concentration (ppm)	Average Area	Statistical A	Analysis
0	0	Slope	18600
20	632546	y-Intercept	276.2
		Correlation	1
30	658296	Coefficient	1
40	694400		
50	730308		
60	916282		
70	9402046		

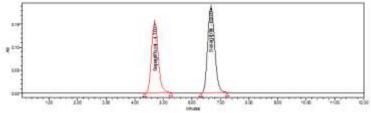

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

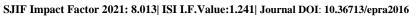
Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal


(a) Dapagliflozin's Linearity Plot (concentration vs response)


Ii) Details on linearity (Saxagliptin),

Concentration (ppm)	Average Area	Statistical Analysis			
0	0	Slope	5140		
20	1202965	y-Intercept	114.7		
30	1254371	Correlation Coefficient	1		
40	1295856				
50	1297167				
60	1308577				
70	1359903				


(b)Plot of Saxagliptin Linearity (Concentration Vs Answer)

There are chromatograms available. 70 parts per million

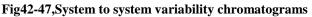
Inference: The standard chromatogram of 70 ppm

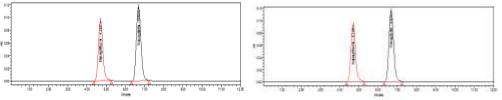
Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal

TABLEMENT: 7

(i) Data on System Variability (Dapagliflozin)


(ii) System-2


·		
S.NO:	Peak area	Assay % of Dapagliflozin
1	634360	98.65
2	634098	98.63
Mean	634180.8	98.64
%RSD	0.019	0.12

Data on device variations (Saxagliptin)

System-2

S.NO: Peak area		Assay % of Saxagliptin
1	1203625	99.98
2	1202225	99.30
Mean	1203136.3	99.07667
%RSD	1.35	0.56

Inference: std-1

Inference: std- 2

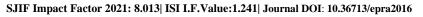
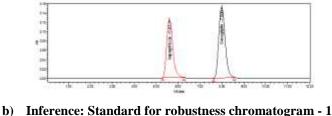

chromatogram showing system-to-system variability Resiliency (Robustness):

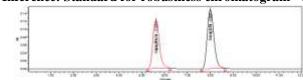
TABLE: 8(i) There's proof that flux rate variability has an impact (Dapagliflozin):

Flow 0.8	Std Area	Tailing	Flow 1.0	Std	Tailing	Flow 1.2	Std	Tailing
ml		factor	ml	Area	factor	ml	Area	factor
	620286	1.322089		634322	1.604878		602077	1.285372
	619282	1.331920		635792	1.584354		601854	1.319385
	621337	1.296438		634360	1.543805		602403	1.292055
	620456	1.315454		635696	1.568590		603421	1.304561
	620765	1.326551		633147	1.559986		602465	1.294621
Avg	620425	1.31849	Avg	634663.4	1.572323	Avg	602444	1.299199
SD	754.0018	0.013728	SD	1100.917	0.023367	SD	599.8833	0.013223
%RSD	0.086	1.04	%RSD	0.184	1.48	%RSD	0.09	1.01

TABLE: 8(ii) Flow rate shift impact data (Saxagliptin)

Flow 0.8	Std Area	Tailing	Flow 1.0	Std Area	Tailing	Flow 1.2	Std	Tailing
ml		factor	ml		factor	ml	Area	factor
	1273707	1.362089		1206349	1.280574		1266195	1.285372
	1273211	1.352617		1205267	1.279932		1265885	1.299385
	1273948	1.376926		1205625	1.261721		1266303	1.308063
	1273465	1.345752		1205840	1.276089		1267243	1.274662
	1273862	1.374925		1205735	1.250640		1265762	1.267630
Avg	1273638.6	1.362462	Avg	1205763.2	1.269791	Avg	166277.6	1.287022
SD	3301.369	0.013609	SD	392.1635	0.01314	SD	582.9758	0.016786
%RSD	1.041	0.99	%RSD	0.19	1.03	%RSD	0.35	1.3

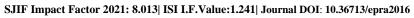



Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal

Fig48-49, Robustness chromatograms

a) Variation in flow rate (for 0.8 ml/min flow) has an effect.


Inference: Standard for robustness chromatogram - 2

SUMMARY AND CONCLUSION

Summary Table								
Parameters	Dapagliflozin	Saxagliptin	LIMIT					
Regressioncoefficient	0.999	0.999	R<1					
Slope(m)	18599.8434	5140						
Intercept(c)	276.2281	114.73	-					
Regression equation (Y=mx+c)	y =18599.8434x + 276.2281	y = 5140x + 114.73						
Assay(% mean assay)	98.64%	99.07%	90-110%					
Specificity	Specific	Specific	No interference of any peak					
System precision %RSD	0.889	1.800	NMT 2.0%					
Method precision %RSD	0.0891	0.1358	NMT 2.0%					
Accuracy % recovery	99.78%	99.80%	98-102%					
LOD	0.56	1.69	NMT 3					
LOQ	0.57	1.74	NMT 10					

CONCLUSION

Chromatography was run through Intersil-ODS C_{18} column (250mm× 4.6mm, 5micron) Mobile phase containing Methanol: Water was pumped through the column in the ratio of 45: 55. The flow rate was 1ml/min. The temperature help was ambient i.e., upto30^oc. The optimized selected wavelength was 210nm. The retention time of Dapagliflozin and Saxagliptin was found to be 4.707min and6.68 min respectively. The %RSD of Dapagliflozin and Saxagliptin was found to be 0.031 and 0.036 respectively. The values of LOD and LOQ obtained from Dapagliflozin and Saxagliptin was 0.56, 1.69 and 0.57, 1.74 respectively. The retention time was decreased and the run time also decreased, so the method development was simple and economical that can be applied successfully for simultaneous estimation of combination of two anti- diabetic drugs; Dapagliflozin and Saxagliptin.

Volume: 6 | Issue: 9 | September 2021

- Peer Reviewed Journal

REFERANCES

- 1. Lindholm.J, Development and Validation of HPLC Method for Analytical and Preparative purpose. Acta Universitatis Upsaliensis, pg. 13-14, (2004).
- 2. Dr.S. Ravi Shankar, Text book of pharmaceutical analysis, Fourth edition, Pg. 13.1-13.2
- 3. Connors Ka. A Textbook of Pharmaceutical Analysis, Wiley intercedences Inc; Delhi, 3rd Ed, Pg. 373-421, (1994)
- Gurdeep R.Chatwal, Sham K. Anand, Instrumental Methods of Chemical Analysis 2.566-2.638 (2007)
 ICH, Validation of analytical procedures: Text and Methodology. International Conference on Harmonization, IFPMA, Geneva, (1996)
- K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edition, Jaypee brother's medical publishers (P) LTD, p-254-255.
- 7. Indian Pharmacopoeia, Indian Pharmacopoeia Commission, Controller of Publication, Government of India, Ministry of health and Family Welfare, Ghaziabad, India, 2 (2010) 1657-1658.
- 8. British Pharmacopoeia, The British Pharmacopoeia Commission, the stationary office, UK, London, 1408-1409 2 (2011).
- 9. https://www.drugbank.ca/drugs/DB00394
- 10. https://www.drugbank.ca/drugs/DB01001