FOOD NUTRITIONAL ANALYSIS AND EDA

Atishya Mahesh Jain^{*1}, KrishnaPriya B², Seno Sunil³, Helen Grace Jikku⁴, Sheethal Kj⁵ ^{1,2,3,4,5}Karunya Institute of Technology and Sciences, Coimbatore

ABSTRACT

Food and nutrition are the way that we get fuel, providing energy for our bodies. We need to replace nutrients in our bodies with a new supply every day. Water is an important component of nutrition. Fats, proteins, and carbohydrates are all required. Nutrition is the science that interprets the nutrients and other substances in food in relation to maintenance, growth, reproduction, health and disease of an organism. It includes ingestion, absorption, assimilation, biosynthesis, catabolism and excretion. Knowing and eating mindfully is not only essential for a healthy gut but also for peace of mind. Also, A diet filled with vegetables, fruits and whole grains could help prevent major conditions such as stroke, diabetes and heart disease. More often than not, we like to gorge on our favourite foods which are not exactly the best for our bodies. While it is okay for such binges to occur occasionally, such diets can be extremely harmful if the person does not strike a balance with healthy foods. This article analyses the most common available foods and the nutritional facts in them. **INDEX TERMS** - Analysis, Food, EDA, Nutrition

1 - INTRODUCTION

Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food. It ensures compliance with trade and food laws. There are a variety of certified methods used for performing nutritional analysis. Exploratory Data Analysis, or EDA, is an important step in any Data Analysis or Data Science project. EDA is the process of investigating the dataset to discover patterns, and anomalies (outliers), and form hypotheses based on our understanding of the dataset. EDA involves generating summary statistics for numerical data in the dataset and creating various graphical representations to understand the data better. In this article, we will understand EDA with the help of dataset and do the nutritional analysis . We will use Python language (Pandas library) for this purpose.

Everybody nowadays is mindful of what they eat. Counting calories and reducing fat intake is the number one advice given by all dieticians and nutritionists. Therefore, we need to know what foods are rich in what nutrients, don't we? The dataset contains a csv file with more than 300 foods each with the amount of Calories, Fats, Proteins, Saturated Fats, Carbohydrates, Fibers labelled for each food. Also, the foods are also categorized into various groups like Desserts, Vegetables, Fruits etc.

2 - PROCEDURE 2.1 Cleaning Data

Data cleaning is always the first step in any data science project. Although the data here seems clean, some minor alterations are required. Data cleaning is the process that removes data that does not belong in your dataset. Data transformation is the process of converting data from one format or structure into another. Transformation processes can also be referred to as data wrangling, or data munging, transforming and mapping data from one "raw" data form into another format for warehousing and analyzing.

imper Imper Imper	t numpy as ap t plotly starses a t success as are t plotly afflice a t plotly graph obj	e py note as p							
+ Cod	e + Martadoven								
aid in	enterpd read.and	(kapita/ta	aut rist		en en	 	Nacional I		
	erto.heat()				Carle 10	 (Charles	(CTOOPER	19471.00	electowerse cos 1
eytra	ento.heat()	Measure							Category
*****	ento.heat()							Carbs	
•+(\$7.2)	erto.twol() Food	Measure	Grame	Calories			Fiber	Carbs 40	Category
+(\$73)	Food Cover mits	Measure ⊺≓	Grame 976	Calories 000	Protein	Set.Fet	Fiber D 0	Carbs 40 52	Catogory Dary protorm

6 cups 1,479

1371

22 42

23 1.4 110 Dary products

Forthad milk

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 2 | February 2022

- Peer Reviewed Journal

First things first, the t's in the data denote miniscule amounts so we might as well replace them by 0.

	nutrientsweatri nutrientsweatri	erts re		T .41	5					
	Rutrients.Nesid	Massure	Gam	Caracteri	Protein	ie.	Sec.For	iter	Carne	Langery
	Converte	1 tit	int.	6400	- 11	40	- 30		-46	Derry products
	. 649.0001	1.146	104	. 161				1.0	14	This points
2	induced in	1 curr	34	127	- 4	. 6	- 4		11	Dere products
	Supplied and dot	1100	- 252	144	. 16	- 80.		1.0	- 24	Day products
. 4	Partney with	1040	1410	1.515	. 95	42	- 24	14	318	Dely presture

Now, we need to remove all the expressions like commas from the dataset so as to convert the numerical data to the respective integer or float variables

```
nutrients=nutrients.replace(',','', regex=True)
nutrients['Fiber']=nutrients['Fiber'].replace('a','', regex=True)
nutrients['Calories'][91]=(8+44)/2
```

Now, let us convert grams, calories, protein, fat, saturated fat, fiber and carbs datatypes to int.

Lets have a quick data quality check

```
print(nutrients.isnull().any())
print('-'*245)
print(nutrients.describe())
print('-'*245)
```

	Graes	Calories	Protein	Fat	Sat,Fat	1
count	335,000000	334.000000	335.000000	335.000080	333,000000	
mean	143.211948	188.802395	8.573134	8,540299	6.438438	
std	138.668626	184.453018	17,753722	19.797871	18.517656	
min	11.000380	0.000000	-1.000000	0.000000	0.000000	
25%	68.800880	75.000000	1.000000	0.000390	0.000000	
58%	108,000000	131.000000	3,000000	1,000000	8.000000	
75%	200,000000	258.008000	12.000000	18.000080	8.000000	
max	1419.000000	1373.000000	232.000000	233.000000	234.000000	
	Fiber	Carbs				
count	334.000000	335,000000				
mean	2.376078	24,982388				
std	15.078272	35,833106				
min	0.000000	0.000000				
25%	8,889688	3.000000				
58%	0.200000	14,000000				
75%	1.000000	38.500000				
нах	235.000000	235,000000				

There's a null value in the fiber column, lets drop that row entirely.

```
nutrients=nutrients.dropna()
nutrients.shape
```

```
(331, 10)
```

2.2 Data Visualization and Analysis

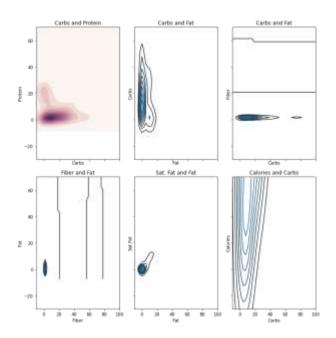
Let's start the analysis by plotting the features with one another. This will not only provide us the distribution of features with one another but also give a quick quantitative feel of the data

```
# Planting the Albplats
Import satplatlib.pyplat +s plf
T, more = plt.subplats(2, 3, figEige=()0, 10), shares=True, sharey=True)
x = np.linspace(2, 3, 10)
cmm_ = nm.subplation pulation terms(0, light=1, sm_cmmp=True)
sm_shaplat(netrients) Carbs [,matriants] Fontain [,cmmp=True)
sm_shaplat(netrients) Carbs [,matriants] Fontain [,cmmp=True)
sm_shaplat(netrients) Carbs [,matriants] Fontain [,cmmp=True)
sm_shaplat(netrients) Tor [, outrient] (furts [, sm_cmmp=True)
sm_shaplat(netrients) Tor [, outrient] (furts [, sm_cmmp=True)
sm_shaplat(netrients) Tor [, outrient] (furts [, sm_cmmp=True]
sm_shaplat(netrient] Tor [, outrient] (furts [, sm_cmmp=True]
sm_shaplat(netrient] Tor [, outrient] (furts [, sm_cmmp=True]
sm_shaplat(netrient] (forts [, nutrient] (forts [, sm_cmmp=True]
sm_shaplat(netrient] (forts [, nutrient] (fort [, sm_cmmp=True]
sm_shaplat(netrient] (forts [, sm_cmm=True] (fort)
sm_s]
```

SJIF Impact Factor 2021: 8.013| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) - Peer Reviewed Journal

Volume: 7 | Issue: 2 | February 2022

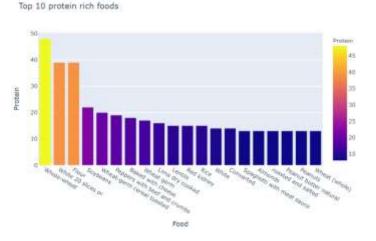
sns.kdeplot(nutrients['Fat'], nutrients['Set.Fat'], ax=axes[1,1])


axes[1,1].set(xlim=(-10, 50), ylim=(-30, 70), title = 'Sat. Fat and Fat')

cmap = sms.cubebelix.palette(start=0.66, light=1, as_cmap=True)

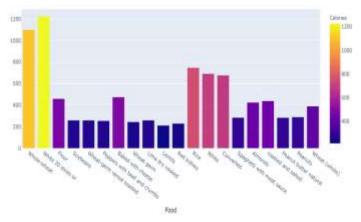
cmap = sns.cubehelix_palette(start=0.56, light=1, as_cmap=True)

sns.kdeplot(nutrients['Carbs'],nutrients['Calories'], ax=axes[1,2]) axes[1,2].set(xlim=(-30, 100), ylim=(-30, 70), title = 'Calories and Carbs')

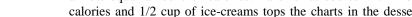

f.tight_Inyout()

Let's dive into individual metrics

What is the most protein rich food in the category of vegetables and grains?



Therefore, from the category of Grains, Vegetables and Seeds, whole wheat has the most protein content followed by white bread. Soybeans are also in the top 20s. Also, Almonds rank no. 1 in the Seeds category.


Foods to stay away from: What food has the most calories?

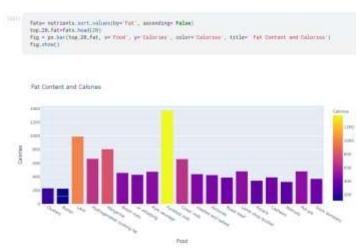
cals= nutriests.sort_values(by='Calories', ascending= False) top_20_cals=cals.head(20) fig = px.bar(top_29, s= Food", y= Calories", color= Calories", title=" Top 10 calorie rich foods") fip.show[]

Top 10 calorie rich foods

Fortified milk has the most calories, followed by white bread. Also, notice how whole wheat has the most proteins but has almost equal amount of calories. Lard is fat source with most calories and 1/2 cup of ice-creams tops the charts in the dessert category.

SJIF Impact Factor 2021: 8.013| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016

ISSN: 2455-7838(Online)


EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 2 | February 2022

- Peer Reviewed Journal

Fat Content

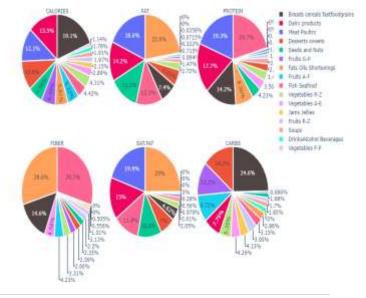
Normally, fat sources are often looked down upon. But, a certain amount of fat is required for a healthy gut. Let's look at some fatty foods.

Therefore, Oysters and Butter have the largest combination of calories and fats, followed by lard.

Analysing categories

Grouping the data into categories can give us the total count of all metrics and thus we can analyse the categories.

```
[13]: category_dist=nutrients.groupby(['Category']).sum()
category_dist
```


	Gcame	Calories	Protein	Fat	Sat.Fat	Fiber	Carbs
Category							
Breads cereals fastfoodgrains	5253	11921.0	403	207	99.0	\$15.91	2059.0
Dairy products	7912	3434,7	563	396	322/0	4.40	(01.0
Desaurts sweets	2958	6808.0	78	163	150.0	20.50	1104.0
DrinksAlcohol Beverages	3284	11120		Ð	0.0	0.00	167.0
Fats Oils Shortenings	695	3629,0	234	631	\$36.0	254,00	299.5
Fish Seafood	1877	2757.0	598	338	. 252.0	235/00	2695
Fruita A-F	3844	3128.0	29	2D	12.8	13.30	8123
Fruits G-P	5412	4054.0	28	-25	21.0	21.10	1009.0
Fruits R-Z	1973	1228.0	27	1	0.0	17,40	330.0
Jama Jellies	411	1245.0		0	0.0	8.00	345.0
Meat Poultry	2724	7529.0	546	520	427.0	0.00	57.1
Seeds and Nota	683	4085.0	120	368	232.0	18,60	140.0
Soops	2495	1191.0	39	-41	43.0	4.00	155.0
Vegetables A-E	3520	1804.0	10.1	9	6.0	76,30	1507
Vegetables F-P	1725	711.0	-41	2	0.0	16.90	142.0
Vegetables R-Z	3360	2604.0	- 98	176	44.0	26.20	347.0

fig_show()

3- RESULT

Category wise distribution of all metrics

SJIF Impact Factor 2021: 8.013| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 2 | February 2022

- Peer Reviewed Journal

4 - CONCLUSION

Some inferences from the above pie charts :-

- It is clear that breads, grains and cereals have the highest amount of Carbs and Calories.
- Largest percentage of protein is in seafood (God bless the vegetarians!)
- Surprisingly, same amount of fiber content is present in Fats and Seafood.
- Seeds and nuts have about 14% fat content.
- Fruits do not have a large percentage in any of the categories except carbs, they have about 10% carbohydrates.
- Dairy products (15%) have more saturated fat content than seafood (11.8%).
- We can expand this project and analyse the other aspects our diet as well using similar methods.

4 - ACKNOWLEDGEMENT

We would like to thank our teachers , family and friends.