

SJIF Impact Factor 2022: 8.197| ISI I.F. Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 4 | April 2022 - Peer Reviewed Journal

2022 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |93 |

IMPLEMENTATION OF LUCAS MATHEMATICAL MODEL TO CHECK

THE GIVEN NUMBER IS PRIME OR NOT. FURTHER COMPARISON

BETWEEN LUCAS METHODOLOGY OF STORING PRIME NUMBERS ON

SECONDARY STORAGE DEVICE WITH STORING THE NUMBERS ON

PRIMARY STORAGE DEVICE. - A CASE STUDY

6138 – Cadet N Akshayan

Class- XII 2021-22, Sainik School Amaravathinagar

Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT
In computer science efficiency of a program solely depends on time factor of processing statement or statement block. Further the

amount of memory it is being used for processing also matters in calculating the space complexity of the program.

All computer languages support sequencing, selection and iteration and file handling methods. The syntax and semantics in

a language differs because of construction compiler or an interpreter is different in nature.

This manuscript specifically examines the execution of checking the given number fall under category of prime number or not

using Lucas Mathematical Model. A Lucas prime sequence generated and stored on secondary storage device to check the prime

number and further comparing with the normal approach of checking a prime number. In addition to this time complexity and space

complexity of Lucas prime sequence is examined. The purpose is to provide a alternative methodology for checking the prime

numbers.

KEYWORDS: Lucas Mathematical Model (LMM), Lucas Numbers(ln), Lucas Sequence(ls), Prime Numbers (pn),

Fibonacci numbers(fn), Runtime Complexity (rc), Big OO(n), Big Theta Θ(n), Big Omega Ω(n), Generalised approach (ga)

1. INTRODUCTION
The Lucas numbers (ln) are series of an integer sequence.

This methodology was conceptualised by a mathematician

Francois Edouard Anatole Lucas. Lucas numbers and

Fibonacci numbers are closely related to each other in term

of their sequence.

The Lucas sequence(ls) and Fibonacci sequence(fs)

have the same function adding the previous two terms but

have different starting terms. This produces a sequence

where the ratios of successive terms approach the golden

ratio, and in fact the terms themselves are rounding of

integer powers of the golden ratio. The sequence also has a

variety of relationships with the Fibonacci numbers, like the

fact that adding any two Fibonacci numbers two terms apart

in the Fibonacci sequence results in the Lucas number in

between [1].

2. RELATED WORK
Many mathematics research scholars have done extensive

research and have changed the way we use Lucas series for

checking prime or not. The Lucas series is not only used

for checking prime numbers but also mathematicians used

for finding the next world’s largest prime number. There

are various softwares running on a server to find the next

world’s largest prime number which are running all over

the world by millions of systems.

3. METHODOLOGY
The Lucas Mathematical Model (LMM) approach is used

for checking a prime number, The Lucas numbers (ln) will

be generated up to the required number of terms and stored

in the secondary storage device in the form of text file, to

store Lucas number in text file a python program is written

and later it will be used thorough another python program

meaning the program uses the text file as an input and

check whether the given number entered thorough

keyboard is prime or not.

To generate Lucas numbers(ln) the system ran the

program for one days (24 hours) and it has generated the

Lucas series (ls) which has a total input of 10
6
-1 is stored

in a file. It is observed that for input of 10
6
-1, it has taken

1GB of space in the secondary storage device.

Further to check the efficiency of Lucas

Mathematical Model (LMM) approach with the normal

methodology of checking the prime numbers and

examining the length of the input.

SJIF Impact Factor 2022: 8.197| ISI I.F. Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 4 | April 2022 - Peer Reviewed Journal

2022 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |94 |

The various programming languages has the

capability to generate Lucas number(ln) and store it in a

file (permanently on secondary storage device). During the

course of research, it was decided to use python

programming language due to its large collection of library

modules and the availability of online support.

ALGORITHM FOR STORING LUCAS

NUMBERS ON SECONDARY STORAGE

DEVICE
STEP 01: START

STEP 02: OPEN LUCAS FILE

STEP 03: READ LUCAS AS LUCAS1

STEP 04: LUCAS1=LIST (LUCAS)

STEP 05: A=1

STEP 06: B=3

STEP 07: WRITE A IN LUCAS FILE

STEP 08: WRITE B IN LUCAS FILE

STEP 09: INPUT N

STEP 10: FOR I IN RANGE (9*N):

STEP 11: P=A+B

STEP 12: WRITE P IN LUCAS FILE

STEP 13: A=B

STEP 14: B=P

STEP 15: CLOSE LUCAS FILE

STEP 16: STOP

PYTHON PROGRAM TO GENERATE THE

LUCAS NUMBER AND STORING IN

SECONDARY STORAGE DEVICE IN THE

FORM OF TEXT FILE

lucas=open('lucas.txt','r+')

lucas1=lucas.readlines()

lucas1=list(lucas1)

a=1

b=3

n=int(input(„Enter no of digits‟)

lucas.write(str(a)+' ')

lucas.write(str(b)+' ')

for i in range(int('9'*5)):

 p=a+b

lucas.write(str(p)+' ')

 a=b

 b=p

lucas.close()

ALGORITHM TO FIND A PRIME NUMBER IN

A LUCAS FILE

STEP 01: START

STEP 02: OPEN LUCAS FILE IN R

MODE

STEP 03:READ THE NUMBERS

STEP 04:SPLIT THE NUMBERS

STEP 05: READ SEARCHING PRIME NO

STEP 06: CHECK THE NO 2 OR 3 OR 5

STEP 07: PRINT “IT IS PRIME NO”

STEP 08: ELSE CHECK NO MOD 2 OR

 NO MOD 3 OR NO MOD 5= 0

STEP 09:PRINT “IT IS NOT PRIME

 NO”

STEP 10: ELSE FIND LENGHT OF NO

AND STORE IN S VARIABLE

STEP 11:CHECK S<6

STEP 12: IF TRUE THEN CHECK IN

LUCAS FILE

STEP 13: SEARCH FOR THE POSITION

OF NUMBER IN LUCAS FILE

AND APPLYING MODULAS OPERATOR TO CHECK

FOR A PRIME IF IT IS TRUE PRINT PRIME

ELSE PRINT NOT A PRIME.

STEP 14: THE SAME SET OF OPERATIONS

(STEP 02 TO STEP 13) WILL BE CARRIED FOR

FINDING TEN DIGIT NO

STEP 15: STOP

PYTHON PROGRAM TO CHECK PRIME OR

NOT

r=open('lucas.txt','r+')

lucas=r.read()

lucas=lucas.split()

x=int(input('Enter the number:'))

if(x==2 or x==3 or x==5):

 print(x,'is a prime number')

elif (x%2==0 or x%3==0 or x%5==0):

 print(x,'is not a prime no')

else:

 s=len(str(x))

 if (s<6):

 if (((int(lucas[x-1])-1))%x==0):

print(x,'is a prime number')

 else:

print(x,'is not a prime number')

 elif(s<11):

r.close()

r=open('lucas1.txt','r+')

lucas=r.read()

lucas=lucas.split()

s=(x-(int('9'*5)+1))

if (((int(lucas[s-1])-1))%x==0):

 print(x,'is a prime no')

 else:

 print(x,'is not a prime number')

r.close()

else:

 print('lucas is not generated')

SJIF Impact Factor 2022: 8.197| ISI I.F. Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 4 | April 2022 - Peer Reviewed Journal

2022 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |95 |

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a

very crucial part. It is important to find the most efficient

algorithm for solving a problem. It is possible to have many

algorithms to solve a problem, but the challenge here is to

choose the most efficient one.[2]

There are multiple ways to design an algorithm, or

considering which one to implement in an application. When

thinking through this, it’s crucial to consider the

algorithm’s time complexity and space complexity.[3]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the

amount of space (or memory) taken by the algorithm to run

as a function of its input length, n. Space complexity

includes both auxiliary space and space used by the input.[3]

Auxiliary space is the temporary or extra space

used by the algorithm while it is being executed. Space

complexity of an algorithm is commonly expressed using

Big (O(n)) notation.[3]

The Space complexity is ignored in this research

paper, since the space complexity of particular problem is

not considered so important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount

of time taken by the algorithm to complete its process as a

function of its input length, n. The time complexity of an

algorithm is commonly expressed using asymptotic

notations:[3]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to

compare performances of different algorithms and choose

the best time-space complexity to solve a particular problem

in the most efficient way possible.[3]

Big O notation is used in Computer Science to

portrait the performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario

of an algorithm, and can be used to describe the execution

time required or the space used (e.g. in memory or on disk)

by an algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case

scenario of an algorithm and can be used to describe the

execution time required or the space used (e.g. in memory or

on disk) by an algorithm.

Big Omega (Ω)is used to represent the best-case

scenario of an algorithm and can be used to describe the

execution time required or the space used (e.g., in memory

or on disk) by an algorithm.

These three methods are the most common and

very popular methods of design and analysis of an algorithm

which are used for finding the efficiency of the program.

7. RUNTIME COMPLEXITY OF CHECKING A

PRIME NUMBER

Input
Generalized

approach

Lucas Mathematical

Model(LMM)

7 0.016026497 0.015622139

97 0.015621662 0.015602868

643 0.015629292 0.015621185

2111 0.015626907 0.01562047

5003 0.015336752 0.016032696

9871 0.015622616 0.015021901

10007 0.015590906 0.015621424

20147 0.015659809 0.015634537

35507 0.031657457 0.015586376

Graphical Representation of Runtime complexity of both

the methods

8.GENERALISED APPROACH - rc

In the normal approach the program checks for the given

number prime or not. The time complexity of the algorithm

for worst case is denoted as:

Big (O(n))

9. LUCAS METHOD (LMM) - rc

The time complexity of the LUCAS Method is calculated as

Big (O(14))

10. CONCLUSION
The Lucas mathematical methodology has the

greater efficiency for checking prime when comparing with

general approach. Further it is also observed that generating

prime series and storing in a file is one time process and it is

SJIF Impact Factor 2022: 8.197| ISI I.F. Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 7 | Issue: 4 | April 2022 - Peer Reviewed Journal

2022 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | www.eprajournals.com |96 |

time consuming but once the file is prepared the

performance of the code is much higher than the normal

approach. In addition to this it is also observed that the

execution of expression also depends on the hardware

configuration.

11. ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any

work or project depends largely on the encouragement and

guidelines of many others. I take this opportunity to express

my gratitude to the people who have been instrumental in

the successful completion of this research paper.

I express deep sense of gratitude to almighty God

for giving me strength for the successful completion of the

research paper.

I express my heartfelt gratitude to my parents for

constant encouragement while carrying out this research

paper.

I express my deep sense of gratitude to the

luminary The Principal Capt. (IN) Nirmal Raghu, Sainik

School Amaravathinagar who has been continuously

motivating and extending their helping hand to us.

I express my sincere thanks to the academician The

Vice Principal Lt Col Nripendra Singh, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

My sincere thanks to Mr. Praveen Kumar

Murigeppa Jigajinni, Master In-charge, A guide, Mentor

and great motivator, who critically reviewed my paper and

helped in solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://en.wikipedia.org/wiki/Lucas_number

2. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/

3. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

https://en.wikipedia.org/wiki/Lucas_number
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

