ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD) Volume: 7 | Issue: 5 | May 2022 - Peer Reviewed Journal

A STUDY OF SEVERAL PROBLEMS OF HEART PATIENTS IN KOLHAPUR DISTRICT USING STATISTICAL TECHNIQUES

Prakash S. Chougule¹, Tejaswi S.Kurane², Mr.Pavankumar T.Patil³. Mr. Gawade Sandesh R.⁴, Mr. Suraj R. Patil⁵

Associate Professor¹, Assistant Professor², Research Student^{3,4,5} Department of Statistics, Rajarshi Chhatrapati Shahu College, Kolhapur (MS), India

ABSTRACT

Heart disease is the leading cause of death. The term "heart disease refers to several types of heart conditions that affect the heart, Coronary artery disease Heart Failure,. Arrhythmia, heart valve disease and Pericardial Disease, Cardiomyopathy (Heart Muscle Disease), Congenital Heart Disease (CHD), are epidemic in India. The Registrar General of India reported that CHD led to 17% of total deaths and 26% of adult deaths in 2001-2003, which increased to 23% of total and 32% of adult deaths in 2010-2013. The World Health Organization and Global Burden of Disease Study also have highlighted increasing trends in years of life lost and disability-adjusted life years from Congenital Heart Disease in India. The Cardiovascular diseases have now become the leading cause of mortality in India. In order to study several problems of Heart Patients we collect the information through systematic questionnaires containing number of attributes and the collected information are analyzed using several statistical tools and techniques. Our study shows, the prevalence of heart diseases and heart diseases related complications are more in male than in female. **KEYWORDS:** CHD, Parametric Test, Nonparametric Test, Level of Significance.

INTRODUCTION

According to the World Health Organization, every year 12 million deaths occur worldwide due to Heart Disease. Heart disease is one of the biggest causes of morbidity and mortality among the population of the world. Prediction of cardiovascular disease is regarded as one of the most important subjects in the section of data analysis. The load of cardiovascular disease is rapidly increasing all over the world from the past few years. Many researches have been conducted in attempt to pinpoint the most influential factors of heart disease as well as accurately predict the overall risk. Heart Disease is even highlighted as a silent killer which leads to the death of the person without obvious symptoms. The early diagnosis of heart disease plays a vital role in making decisions on lifestyle changes in high-risk patients and in turn reduces the complications.

Heart is an important organ of the human body. It pumps blood to every part of our anatomy. If it fails to function correctly, then the brain and various other organs will stop working, and within few minutes, the person will die. Change in lifestyle, work related stress and bad food habits contribute to the increase in the rate of several heart-related diseases. Heart diseases have emerged as one of the most prominent causes of death all around the world. According to World Health Organisation, heart related diseases are responsible for taking 17.7 million lives every year, 31% of all global deaths. In India too, heart-related diseases have become the leading cause of mortality. Heart diseases have killed 1.7 million Indians in 2016, according to the 2016 Global Burden of Disease Report, released on 15th September 2017. Heart-related diseases increase the spending on health care and also reduce the productivity of an individual. Estimates made by the World Health Organisation (WHO), suggest that India has lost up to \$237 billion, from 2005 to 2015, due to heart-related or Cardiovascular diseases. Thus, feasible and accurate prediction of heart-related diseases is very. important .Medical organizations, all around the world, collect data on various health-related issues. These data can be exploited using various machine learning techniques to gain useful insights. But the data collected is very massive and, many times, this data can be very noisy. These datasets, which are too overwhelming for human minds to comprehend.

According to the World Health Organization (WHO), cardiovascular disease mortality will rise to almost 30 million by 2040 S. I. Ayon, M. M. et. al.(2020). Electrocardiogram (ECG), echocardiogram (heart ultrasound), cardiac magnetic resonance imaging (MRI), stress tests (exercise stress test, stress ECG, nuclear cardiac stress test), and angiography are commonly used tests by physicians to help identify cardiovascular problems. Poornima et. al. (2018) studied Effective heart disease prediction system using data mining techniques and conclude that This system performs realistically well even without retraining. Furthermore, the experimental results show that the system predicts heart disease with ~100% accuracy by using neural networks. In order to study the various pattern of heart patient in Kolhapur district. We prepare a systematic Questionarraie contains the number of attributes and collected information are analyzed using different statistical tools and techniques.

EPRA International Journal of Research and Development (IJRD) Volume: 7 | Issue: 5 | May 2022 - Peer Reviewed Journal

OBJECTIVES

- ✤ To identify the risk factors associated with heart dieses
- ✤ To study the association between diabetes & family history of diabetes
- To study association between diabetes & gender
- ✤ To study association between diabetes & exercise
- To study the association between blood pressure and diet
- To study the identify risk factors of heart disease
- To identify common types of heart disease
- To discuss the preventative measure
- To identify factors that contribute to heart disease
- To identify foods to avoid or limit in a cholesterol controlled diet

METHODOLOGY

Primary data is collected through a structured questionnaire. The univariate, bivariate and multivariate analysis has been applied on the data. In univariate analysis the single variable has been uniquely examined by means of graph and percentages. In bivariate analysis, the relationships among variables were explored and in multivariate analysis, tried to identify risk factors of the diabetes along with their corresponding probabilities according to the survey conducted.

Statistical Tools Used

- 1. Graphical representation
- 2. Descriptive Statistics
- 3. Testing of hypothesis
- Software Used: MS-Excel MS-World

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD) Volume: 7 | Issue: 5 | May 2022 - Peer Reviewed Journal

GRAPHICAL REPRESENTATION

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 5 | May 2022

- Peer Reviewed Journal

ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 5 | May 2022

- Peer Reviewed Journal

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 5 | May 2022

- Peer Reviewed Journal

Testing of Hypothesis

a) Chi-square test for testing Independence between area and gender of heart Patients :-

H₀: Area and gender of heart disease are not independent V/S

H1: Area and gender of heart disease are independent.

Level of significance = $\alpha = 5\% = 0.05$

Observation Table

	AERA AND GENDER			
	A			
	RUAL	TOTAL		
MALE	67 54		121	
FEMALE	45 39		84	
TOTAL	112	205		

 $\div \chi^2_{Cal} = 0.0648$, $\chi^2_{\ tab} = \! 3.8414$ and $\div \chi^2_{Cal} < \chi^2_{\ tab}$

a) Chi-square test for testing Independence between gender and blood pressure of heart Patients:-

H₀: Gender and blood pressure of heart disease are independent.

H₁: Gender and blood pressure of heart disease are not independent.

Level of significance = $\alpha = 5\% = 0.05$

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 5 | May 2022

- Peer Reviewed Journal

Observation Table

GE	GENDER AND BLOOD PRESSURE					
	BL					
	LESS	HIGH	TOTAL			
MALE	9	121				
FEMALE	9	84				
TOTAL	18	74	205			

 $\therefore \chi^2_{Cal} = 0.6739, \chi^2_{tab} = 5.9914 \text{ and } \quad \therefore \chi^2_{Cal} < \chi^2_{tab}$

b) Chi-square test for testing association between Gender and Exercise of heart Patients:-

H₀: Gender and Exercise of heart disease are dependent.

H1 Gender and Exercise of heart disease are not dependent.

Level of significance = $\alpha = 5\% = 0.05$

Observation Table

EXERCISE AND GENDER				
	EXER	CISE		
	YES	NO	TOTAL	
MALE	94 27		121	
FEMALE	41 43		84	
TOTAL	135 70		205	

 $\chi^2_{Cal} = 18.3854, \chi^2_{tab} = 3.8414 \text{ and } \therefore \chi^2_{Cal} > \chi^2_{tab}$

c) Chi-square test for testing association between Gender and Diabetes of heart Patients:-

H₀: Gender and diabetes of heart disease are independent.

H₁ Gender and diabetes of heart disease are not independent.

Level of significance = $\alpha = 5\% = 0.05$

Observation Table –

GENDER AND DIABETES					
	DIAB	ETES			
	YES	NO	TOTAL		
MALE	39	82	121		
FEMALE	25	59	84		
TOTAL	64	141	205		

- Peer Reviewed Journal

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 5 | May 2022

$$\therefore \chi^2_{Cal} = 0.1408, \chi^2_{tab} = 3.8414 \text{ and} \qquad \therefore \chi^2_{Cal} < \chi^2_{tab}$$

d) Chi-square test for testing association between Surgery and Gender of heart Patients:-

H₀: Surgery and gender of heart disease are independent.

H₁: Surgery and gender of heart disease are not independent

Level of significance = $\alpha = 5\% = 0.05$

Observation Table

SUF	SURGERY AND GENDER				
	SUE	GERY			
	YES	NO	TOTAL		
MALE	38	83	121		
FEMALE	16	68	84		
TOTAL	54	151	205		

 $\therefore \chi^2_{Cal} = 3.9020, \, \chi^2_{\, tab} = 3.8414 \qquad \text{and} \quad \therefore \chi^2_{Cal} > \chi^2_{\, tab}$

e) Chi-square test for testing association between Diabetes and Exercise of heart Patients:-

H₀: Diabetes and Exercise of heart disease are independent.

H1: Diabetes and Exercise of heart disease are not independent

Level of significance = $\alpha = 5\% = 0.05$

Observation Table

DIABETES AND EXERCISE				
	EXER	CISE		
DIABETES	YES	NO	TOTAL	
YES	41	23	64	
NO	94	47	141	
TOTAL	135	70	205	

 $\therefore \chi^2_{Cal} = 0.1327, \chi^2_{tab} = 3.8414 \text{ and } \therefore \chi^2_{Cal} < \chi^2_{tab}$

f) Chi-square test for testing association between Blood Pressure and Salt of heart Patients:-

- H₀: Blood pressure and Salt of heart disease are dependent.
- H1: Blood pressure of heart disease are not dependent

Level of significance = $\alpha = 5\% = 0.05$

EPRA International Journal of Research and Development (IJRD) - Peer Reviewed Journal

Volume: 7 | Issue: 5 | May 2022

Observation Table

BLOOD PRESSURE AND SALT						
	BLC	BLOOD PRESSURE				
SALT	HIGH	HIGH NORMAL LESS				
HIGH	16	28				
NORMAL	52	157				
LESS	6	20				
TOTAL	74	113	18	205		

 $\chi^2_{Cal} = 7.2377 \chi^2_{tab} = 7.8147$ and $\therefore \chi^2_{Cal} < \chi^2_{tab}$

Chi-square test for testing association between Age and Cholesterol level of heart Patients:g)

H₀: Age and Cholesterol level of heart disease Patients are independent.

H₁: Age of Cholesterol level of heart disease Patients are not independent

Level of significance = $\alpha = 5\% = 0.05$

Observation Table

AGES	HIGH	NORMAL	LESS	TOTAL
15-25	4	37	0	41
25-35	8	26	0	34
35-45	19	38	0	57
ABOVE45	18	55	0	73
TOTAL	49	156	0	205

$\therefore \chi^2_{Cal} = 7.2377 \chi^2_{tab} = 7.8147$ $\therefore \chi^2_{Cal} < \chi^2_{tab}$

h) Kruskal-Wallis Test

- H₀: There is significance difference between different periods of heart problem in male and female is same
- H₁: There is significance difference between different period of heart problem in male and female is not same

Test statistic -
$$H = \frac{12}{N(N+1)} * \sum_{i=1}^{N-2} \frac{R_i^2}{n_i} - 3(N+1)$$

Observation Table

PERIOD OF HEART PROBLEM				
Duration MALE FEMALE				
0-6 M	25	11		
1-2 Y	5	3		
ABOVE 2 Y	11	9		
6-12 M	2	3		
NO	35	32		

EPRA International Journal of Research and Development (IJRD) - Peer Reviewed Journal

Volume: 7 | Issue: 5 | May 2022

$$H = \frac{12}{N(N+1)} * \sum \frac{T_i^2}{n_i} - 3(N+1)$$

$$H = \frac{12}{10(10+1)} \left[\frac{(14.5)^2}{2} + \frac{(6.5)^2}{2} + \frac{(11.5)^2}{2} + \frac{(3.5)^2}{2} + \frac{(19)^2}{2} - 3(10+1) \right]$$

$$H = 8.345455$$

$$\chi^2_{tab} = 3.8141$$

Calculated value H < Tabulated value

OVERALL CONCLUSION

- Despite of having lower BMI, people are getting caught with diabetes. Hence, we can conclude that high BMI or \triangleright overweight is not only the risk factor of diabetes.
- \triangleright The rate of heart patient is equally and rapidly increasing in rural areas as well as urban area.
- \triangleright The Prevalence of heart diseases and heart diseases related complications are more in male than in female.
- \triangleright When the sample data is classified according to the different age groups, we observed that in the younger age group (i.e. 25-40) more number of females are getting caught with diabetes. While, there is high probability of males being suffering from the disease in the middle (40-55) and older (55 & above) age groups.
- \geq Study shows that there is significant association between diabetes and severe health complications such as cardiovascular (High B.P., Heart disease), ocular (impaired vision problems) and renal (kidney related) complications.

REFERENCES

- 1. S. I. Ayon, M. M. Islam, and M. R. Hossain, "Coronary artery heart disease prediction: a comparative study of computational intelligence techniques," IETE Journal of Research, 2020.
- R. Aggrawal and S. Pal, "Sequential feature selection and machine learning algorithm-based patient's death events prediction and 2. diagnosis in heart disease," SN Computer Science, vol. 1, no. 6, 2020.
- Gao, A. A. Ali, H. S. Hassan, and E. M. Anwar, "Improving the accuracy for analyzing heart diseases prediction based on the ensemble 3 method," Complexity, vol. 2021, Article ID 6663455, 10 pages, 2021