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ABSTRACT 
In this paper, a new class of sets namely gη-closed, gη-closure of a set and gη-neighbourhood in bitopological spaces 

are introduced and some of their basic properties are discussed. The relationships among closed, -closed, s-closed, η-

closed, gη-closed and other generalized closed sets are investigated. Several examples are provided to illustrate the behavior 

of these new class of sets. 
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1. INTRODUCTION 

A triplet (X, 1, 2), where X is a non-empty set and 1 and 2 are topologies on X is called a bitopological 

space. In 1963, Kelly [6] initiated the study of such spaces. In 1981, Bose [1] introduced the concepts of 

semi open sets in bitopological spaces. Bose and Sinha [2] introduced the notion of regular open sets in 

bitopological spaces. In 1986, Fukutake [4] introduced the concept of g-closed sets in bitopological spaces. 

In 2004, Sheik John and Sundaram [11] introduced pairwise -open sets. In 2005, El-Tantawi and Abu-

Donia [3] introduced the notion of g-closed sets. In 2008, Khedr [7] introduced sg-closed sets. In 2009, 

Navalagi, [8] introduced the notion of g#-closed sets.   In 2012, Veronica et. al [10] introduced the concept 

of g**-closed sets in bitopological spaces. Neelamegarajan and Jamal [9] introduced generalization of α-

open sets in bitopological spaces. In 2014, Imran [5] introduced the notion of g*-closed sets. In 2019, 

Subbulakshmi et. al [13, 14] introduced and investigated -open and gη-closed sets. In 2020, Sivanthi [12] 

introduced the concept of g-closed sets in bitopological spaces. Sumathi et al. [15] introduced the notion 

of g-closed sets in bitopological spaces. In this paper, a new class of sets called gη-closed and gη-open 

sets, gη-closure of a set and gη-neighbourhoods in bitopological spaces and some of their basic properties 

are studied. 

 

2. PRELIMINARIES 

Definition 2.1. A subset A of a bitopological space (X, 1, 2) is called  

(i) 12 regular open set [2] if A = 2int(1cl(A)), 12regular closed set if A = 2cl(1int (A)).  

(ii) 12 semi-open set [1] if A  2cl(1int (A)), 12semi-closed set if 2int(1cl(A))  A.  

(iii) 12 -open set [9] if A  1int (2cl(1int (A))), 12-closed set if 1cl(2int(1cl(A)))  A.  

(iv) 12-open set [13] if A  1int(2cl(1int(A)))  2cl(1int (A)), 12-closed set if 1cl 

(2int(1cl(A)))  2int(1cl(A))  A.  
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(v) The finite union of 12-regular open sets is 12-open set [12]. The complement of a 12-open 

set is said to be 12--closed.  

 

Definition 2.2. A subset A of a bitopological space (X, 1, 2) is called  

(i) 12 g-closed set [4] if 2cl(A)  U whenever A  U and U is 1-open in X.  

(ii) 12 g*-closed set [11] if 2-cl(A)  U whenever A  U and U is 1-g-open in X.  

(iii) 12 g**-closed set [10] if 2-cl(A)  U whenever A  U and U is 1-g*-open in X.  

(iv) 12 g-closed set [9] if 2-cl(A)  U whenever A  U and U is 1 -open in X.  

(v) 12 g-closed set [3] if 2cl(A)  U whenever A  U and U is 1-open in X. 

(vi) 12 g*-closed set [5] if 2cl(A)  U whenever A  U and U is 1-open in X.  

(vii) 12 -g#-closed set [8] if 2-cl(A)  U whenever A  U and U is 1 g-open in X.  

(viii) 12 gs-closed set [4] if 2s-cl(A)  U whenever A  U and U is 1-open in X. 

(ix) 12 sg-closed set [7] if 2s-cl(A)  U whenever A  U and U is 1 semi-open in X. 

(x) 12 g-closed set [14, 15] if 2cl(A)  U whenever A  U and U is 1-open in X.  

(xi) 12 g-closed set [12] if 2cl(A)  U whenever A  U and U is 1 -open in X.  

  

3. 12g-CLOSED SETS 

Definition 3.1. A subset A of a bitopological space (X, 1, 2) is called 12gη-closed if 2-cl(A)  U 

whenever A  U and U is 1-open in X.  

 

The family of all 12-closed sets in a bitopological space (X, 1, 2) is denoted by 12gη C(X, 1, 2)  

 

Theorem 3.2. Every 2-closed set is 12gη-closed.  

Proof. Let A be any 2-closed set in (X, 1, 2) and A  U, where U is 1-open. Since every 2-closed 

set is 2η-closed, so 2η-cl(A)  2cl(A) = A. Therefore, 2η-cl(A)  A  U. Hence A is 12gη-closed 

set.  

 

Theorem 3.3. Every 2-semi-closed set is 12gη-closed.  

Proof. Let A be any 2-semi-closed set in (X, 1, 2) and A  U, where U is 1-open. Since every 2semi-

closed set is 2η-closed, so 2η-cl(A)  2scl(A) = A. Therefore 2η-cl(A)  A  U. Hence A is 12gη-

closed set.  

 

Theorem 3.4. Every 2α-closed set is 12 gη-closed.  

Proof. Let A be any 2α-closed set in (X, 1, 2 ) and A  U, where U is 1-open. Since every 2α-closed 

set is 2η-closed, so 2η-cl(A)  2α-cl(A) = A. Therefore 2η-cl(A)  A  U. Hence A is 12gη-

closed set.  

 

Theorem 3.5. Every 2regular-closed set is 12gη-closed.  

Proof. Let A be any 2regular-closed set in (X, 1, 2) and A  U, where U is 2-open. Since every 2-

regular closed set is 2-closed. So, by Theorem 3.2, A is 12gη-closed set.  

 

Theorem 3.6. Every 2η-closed set is 12gη-closed.  

Proof. Let A be any 2η-closed set in (X, 1, 2) and A  U, where U is 1-open. Since A is 2η- closed. 

Therefore 2η-cl(A) = A  U. Hence A is 12gη-closed set.  
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Theorem 3.7. Every 12gη-closed set is 12gη-closed.  

Proof. Let A be any 12gη-closed set in (X, 1, 2) then 2η-cl(A)  U whenever A  U, where U is 

1-open and since every 1-open set is 1-open. Given that A is 12gη-closed set such that 2η-cl(A) 

 U. Hence A is 12gη-closed set.  

 

Theorem 3.8. Every 12g-closed set is 12gη-closed.  

Proof. Let A be any 12g-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1-open. Since every 2-closed set is 2-η-closed, so 2η-cl(A)   

2cl(A)  U. Therefore 2η-cl(A)  U.  Hence A is 12gη-closed set.  

Theorem 3.9. Every 12g-closed set is 12gη-closed.  

Proof. Let A be any 12g-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open. Since every 2-closed set is 2-η-closed, so 2η-cl(A)  2cl(A)  U. Therefore 2η-cl(A)  U.  

Hence A is 12gη-closed set. 

 

Theorem 3.10. Every 12g*-closed set is 12gη-closed.  

Proof. Let A be any 12g*-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1g-open. Given that A is 12g*-closed set such that 2cl(A)  U. 

But we have 2η-cl(A)  2cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.11. Every 12g**-closed set is 12gη-closed.  

Proof. Let A be any 12g**-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1g*-open. Given that A is 12g**-closed set such that 2cl(A)  

U. But we have 2η-cl(A)  2cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.12. Every 12g#-closed set is 12gη-closed.  

Proof. Let A be any 12g#-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1g-open. Given that A is 12g#-closed set such that 2cl(A)  U. 

But we have 2η-cl(A)  2cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.13. Every 12gs-closed set is 12gη-closed.  

Proof. Let A be any 12gs-closed set in (X, 1, 2) then 2s-cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1-open. Given that A is 12gs-closed set such that 2s-cl(A)  U. 

But we have 2η-cl(A)  2s-cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.14. Every 12sg-closed set is 12gη-closed.  

Proof. Let A be any 12sg-closed set in (X, 1, 2) then 2s-cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1s-open. Given that A is 12sg-closed set such that 2s-cl(A)  U. 

But we have 2η-cl(A)  2s-cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.15. Every 12αg-closed set is 12gη-closed.  

Proof. Let A be any 12g-closed set in (X, 1, 2) then 2-cl(A)  U whenever A  U, where U is 

1-open and since every 1-open set is 1-open. Given that A is 12g-closed set such that 2-cl(A) 

 U. But we have 2η-cl(A)  2-cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  
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Theorem 3.16. Every 12gα-closed set is 12gη-closed.  

Proof. Let A be any 12gα-closed set in (X, 1, 2) then 2-cl(A)  U whenever A  U, where U is 

1-open and since every 1-open set is 1α-open. Given that A is 12gα-closed set such that 2-cl(A) 

 U. But we have 2η-cl(A)  2-cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Theorem 3.17. Every 12gα*-closed set is 12gη-closed.  

Proof. Let A be any 12gα*-closed set in (X, 1, 2) then 2cl(A)  U whenever A  U, where U is 1-

open and since every 1-open set is 1α-open. Given that A is 12gα*-closed set such that 2cl(A)  U. 

But we have 2η-cl(A)  2cl(A)  U. Therefore 2η-cl(A)  U. Hence A is 12gη-closed set.  

 

Remark 3.18. We have the following implications for the properties of subsets: 

 

12g-closed           12g*-closed           12g**-closed        2-closed        2-closed 

 

 

   2-closed                                                                                                    12g-closed  

 

 

 12g-closed                                           12gη-closed                            12g-closed 

 

 

12g*-closed                                                                                             12g#-closed 

 

 

 

2s-closed       12gs-closed        12sg-closed       12g-closed              2regular-closed 

 

Where none of the implications is reversible as can be seen from the following examples: 

 

Example 3.19. Let X = {a, b, c, d} with 1 = {X, , {a}, {b, d}, {a, b, d}} and 2  = {X, , {b}, {c, d}, {b, 

c, d}}. Then the set A = {b} is 12gη-closed but not 2closed.  

 

Example 3.20. Let X = {a, b, c, d} with 1 = {X, , {a}, {b, d}, {a, b, d}} and 2  = {X, , {b}, {c, d}, {b, 

c, d}}. Then the set A = {c} is 12gη-closed but not 2semi-closed.  

 

Example 3.21. Let X = {a, b, c, d} with 1 = {X, , {a}, {b, d}, {a, b, d}} and 2  = {X, , {b}, {c, d}, {b, 

c, d}}. Then the set A = {b} is 12 gη-closed but not 2α-closed.  

 

Example 3.22. Let X = {a, b, c, d} with 1 = {X, , {a}, {b, d}, {a, b, d}} and 2 = {X, , {b}, {c, d}, {b, 

c, d}}. Then the set A = {c, d} is 1 gη-closed but not 2regular closed.  

 

Example 3.23. Let X = {a, b, c, d} with 1 = {X, , {a}, {b, d}, {a, b, d}} and 2 = {X, , {b}, {c, d}, {b, 

c, d}}. Then the set A = {b, c} is 12gη-closed but not 2η-closed.  
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Example 3.24. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. Then the set A = {d} is 12gη-closed but not 12g-closed.  

 

Example 3.25. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. Then the set A = {a} is 12gη-closed but not 12g*-closed.  

 

Example 3.26. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. Then the set A = {a, d} is 12gη-closed but not 12sg-closed.  

 

Example 3.27. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. Then the set A = {a} is 12gη-closed but not 12αg-closed.  

 

Example 3.28. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. Then the set A = {a} is 12gη-closed but not 12gα-closed.  

 

Example 3.29. Let X = {a, b, c, d} with 1 = {X, , {d}, {a, b, d}} and 2 = {X, , {d}, {b, c}, {b, c, d}}. 

The set A = {d} is 12gη-closed but not 2-closed.  

 

Remark 3.30. Let A and B be two 12gη-closed sets, then their union and intersection need not be 

12gη-closed as shown from the following examples.  

 

Example 3.31. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {b}, {c, d}, 

{b, c, d}}. Here the sets A = {b} and B = {c} are 12gη-closed sets. But their union A  B = {b, c}  is 

not 12gη-closed.  

 

Example 3.32. Let X = {a, b, c, d} with 1 = {X, , {c}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, {a, 

b, d}}. Here the sets A = {a, c, d} and B = {b, c, d} are 12gη-closed. But their intersection A  B = {c, 

d} is not 12gη-closed.  

 

Theorem 3.33. Let A be a subset of a bitopological space (X, 1, 2). If A is 12gη-closed, 2ηcl(A) − 

A does not contain any non-empty 1-closed set.  

Proof. Suppose that A is 12gη-closed. Let M be a non-empty 1-closed set in X such that M  

2ηcl(A) − A. Then A  X − M. Since A is 12gη-closed set and X − M is 1-open, 2ηcl(A)  X − 

M. That is, M  X − 2ηcl(A). So M  (X − 2ηcl(A))  (2ηcl(A) − A).Therefore M = .  

 

Corollary 3.34. Let A be 12gη-closed. Then A is 2-closed if and only if 2cl(A) − A is 1-closed.  

Proof. Suppose that A is 12gη-closed and 2-closed. Since A is 2-closed, we have 2-cl(A) = A. 

Therefore, 2-cl(A) − A =  which is 1-closed.  

 

Conversely, suppose that A is 12gη-closed and 2 cl(A) − A is 1-closed. Since A is 12gη-closed, 

we have 2-cl(A) − A contains no nonempty 1-closed set by Theorem 3.33. Since 2-cl(A) − A is 

itself 1-closed, we have 2-cl(A) − A = . Therefore, 2-cl(A) = A implies that A is 2-closed.  
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Theorem 3.35. Let A and B be any two subsets of a bitopological space (X, 1, 2), such that A  B  

2ηcl(A). If A is 12gη-closed, then 𝐵 is also 12gη-closed.  

Proof. Let B  P and 𝑃 is 1-open in X. Since A  B, we have A  P. Since A is 12gη-closed, we 

have 2ηcl(A)  P. As B  2ηcl(A), 2ηcl(B)  2ηcl(A). Hence 2ηcl(B)  P. Therefore 𝐵 is 12gη-

closed.  

 

4. 12 g-OPEN SETS 

Definition 4.1. A subset A of (X, 1, 2) is said to be 12gη-open in X if its complement X − A is 

12gηclosed in (X, 1, 2).  

 

Theorem 4.2. A subset A of a bitopological space (X, 1, 2) is 12gη-open if and only if P  2η-

int(A) whenever P  A and P is 1-closed in X.  

Proof. Let A is 12gη-open. Let P  A and P is 1-closed in X. Then Ac  Pc and Pc is 1-open in X. 

Since A is 12gη-open, we have Ac is 12gη-closed. Hence 2η-cl(Ac)  Pc. Since 2η-cl(A) = (2η-

int(A))c. Consequently, (2η-int(A))c  Pc. Therefore P  2η-int(A). 

 

Conversely, suppose that P  2η-int(A) whenever P  A and P is 1-closed in X. Let Ac  Q and Q is 

1-open in X. Then Qc  A and Qc is 1-closed in X. By hypothesis, Qc  2η-int(A). That is, (2η-

int(A))c  Q. Therefore, 2η-cl(Ac)  Q. Consequently Ac is 12gη-closed. Hence A is 12gη-open.  

 

Theorem 4.3. Let A and B be subsets of a bitopological space (X, 1, 2) such that 2η-int(A)  B  A. 

If A is 12gη-open, then B is also 12gη-open.  

Proof. Suppose that A and B are subsets of a bitopological space(X, 1, 2) such that 2η-int(A)  B  A, 

let A be 12gη-open. Then Ac  Bc  2η-cl(Ac). Since Ac is 12gη-closed. By Theorem 3.35, Bc is 

12gη-closed in X. Therefore B is 12gη-open.  

 

5. 12gη -CLOSURE 

Definition 5.1. For a subset A of a bitopological space (X, 1, 2), the intersection of all 12gη-closed 

sets containing A is called the 12gη-closure of A and is denoted by 12gη-cl(A). That is,  

 

                         12gη-cl(A) = ∩{M : A  M, M is 12gη-closed in X}.  

 

Remark 5.2. If A and B are any two subsets of a bitopological space (X, 1, 2), then  

(i) 12gη-cl(X) = X.  

(ii) 12gη-cl() = .  

 

Example 5.3. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and 2 = {X, , {a}, {b, d}, 

{a, b, d}}. The 12gη-closed sets are {X, , {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},{a, b, 

c},{a, b, d}, {a, c, d}, {b, c, d}. Let A = {a, c}. Then 12gη-cl(A) = {a, c}, 12gη-cl(X) = X, 12gη-

cl( ) = .  

 

Remark 5.4. If A and B are any two subsets of a bitopological space (X, 1, 2), then  

(i) A  B  12gη-cl(A)  12gη-cl(B).  

(ii) 12gη-cl(12gη-cl(A)) = 12gη-cl(A).  
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(iii) 12gη-cl(A  B)  12gη-cl(A)  12gη-cl(B)  

(iv) 12gη-cl(A   B)  12gη-cl(A)  12gη-cl(B).  

 

Theorem 5.5. A is a nonempty subset of a bitopological space (X, 1, 2). x  12gη-cl(A) if and only 

if A  V   ∀ 12gη-open set V containing x.  

Proof. A is a nonempty subset of a bitopological space (X, 1, 2) and x  12gη-cl(A). Suppose there 

exists a 12gη-open set V containing x such that A  V = . Then A  X – V and X – V is a 12gη-

closed set and so 12gηcl(A)  X – V. Therefore x  V which is a contradiction. Hence A  V   ∀ 

12gη-open set V containing x.  

 

Conversely, A is a nonempty subset of a bitopological space (X, 1, 2) and x  X is such that A  V   

∀ 12gη-open set V containing x. x  12gη-cl(A).  

 There exists a 12gη-closed set F such that A  F and x  F.  

 There exists a 12gη-open set X – F containing x and A  (X – F) =  which is a contradiction. 

Therefore x  12gη-cl(A).  

 

6. 12gη -NEIGHBOURHOODS 

Definition 6.1. Let X be a bitopological space and let x  X. A subset N of X is said to be a 12gη-

neighbourhood of x if and only if there is a 12gη-open set G such that x  G  N.  

 

Definition 6.2. A subset N of a bitopological space X, is called a 12gη-neighbourhood of A  X if 

and only if there exists a 12gη-open set G such that A  G  N.  

 

Theorem 6.3. Every neighbourhood N of x  X is a 12gη-neighbourhood of (X, 1, 2).  

Proof. Let N be a neighbourhood of a point x  X. To prove that N is a 12gη-neighbourhood of x. By 

Definition 6.2, there exist an open set G such that x  G  N. As every open set is 12gη-open, so G is 

12gη-open. Therefore, we have x  G  N. Hence N is 12gη-neighbourhood of X.  

 

Remark 6.4. In general a 12gη-neighbourhood N of x  X need not to be a neighbourhood of x in X, 

as in the following example.  

 

Example 6.5. Let X = {a, b, c, d} with 1 = {X, , {a}, {b}, {a, b}, {a, b, c}} and  = {X, , {a}, {b, d}, 

{a, b, d}}. The set {a, c} is 12gη-neighbourhood of the point c, since the 12gη-open set {a, c} is 

such that c  {a, c}  {a, c}. However the set {a, c} is not a neighbourhood of the point c, since no open 

set G exists such that c  G  {a, c}.  

 

7. CONCLUSION 

In this paper, a new class of sets namely gη-closed sets, gη-closure of a set, gη-open sets, gη-

neighbourhoods in bitopological spaces are studied and some of their basic properties are discussed. The 

relationships among closed, -closed, s-closed, η-closed, gη-closed and other generalized closed sets are 

investigated. Several examples are provided to illustrate the behavior of these new class of sets. The 

12gη-closed set can be used to derive a new decomposition of closed map, open map, continuity, 

homeomorphism, and new separation axioms. This idea can be extended to topological ordered spaces, 

bitopological ordered spaces and fuzzy topological spaces. 
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