$\pi \mathrm{g} \eta$-CLOSED SETS IN BITOPOLOGICAL SPACES

${ }^{1}$ Hamant Kumar and ${ }^{2}$ M. C. Sharma
Department of Mathematics
${ }^{1}$ Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)
${ }^{2}$ N. R. E. C. College, Khurja, U. P. (India)

Abstract

In this paper, a new class of sets namely $\pi g \eta$-closed, $\pi g \eta$-closure of a set and $\pi g \eta$-neighbourhood in bitopological spaces are introduced and some of their basic properties are discussed. The relationships among closed, α-closed, s-closed, η closed, g η-closed and other generalized closed sets are investigated. Several examples are provided to illustrate the behavior of these new class of sets.

KEYWORDS : $\pi g \eta$-closed and $\pi g \eta$-open sets; $\pi g \eta$-closure, $\pi g \eta$-neighbourhood.
2020 AMS Subject Classification: 54A05, 54A10

1. INTRODUCTION

A triplet ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$), where X is a non-empty set and \mathfrak{I}_{1} and \mathfrak{I}_{2} are topologies on X is called a bitopological space. In 1963, Kelly [6] initiated the study of such spaces. In 1981, Bose [1] introduced the concepts of semi open sets in bitopological spaces. Bose and Sinha [2] introduced the notion of regular open sets in bitopological spaces. In 1986, Fukutake [4] introduced the concept of g-closed sets in bitopological spaces. In 2004, Sheik John and Sundaram [11] introduced pairwise π-open sets. In 2005, El-Tantawi and AbuDonia [3] introduced the notion of $\alpha \mathrm{g}$-closed sets. In 2008, Khedr [7] introduced sg-closed sets. In 2009, Navalagi, [8] introduced the notion of $\mathrm{g}^{\#}$-closed sets. In 2012, Veronica et. al [10] introduced the concept of $\mathrm{g}^{* *}$-closed sets in bitopological spaces. Neelamegarajan and Jamal [9] introduced generalization of α open sets in bitopological spaces. In 2014, Imran [5] introduced the notion of $\mathrm{g} \alpha *$-closed sets. In 2019, Subbulakshmi et. al [13, 14] introduced and investigated η-open and g η-closed sets. In 2020, Sivanthi [12] introduced the concept of $\pi \mathrm{g}$-closed sets in bitopological spaces. Sumathi et al. [15] introduced the notion of $\mathrm{g} \eta$-closed sets in bitopological spaces. In this paper, a new class of sets called $\pi \mathrm{g} \mathrm{\eta}$-closed and $\pi \mathrm{g} \eta$-open sets, $\pi \mathrm{g} \mathrm{\eta}$-closure of a set and $\pi \mathrm{g} \eta$-neighbourhoods in bitopological spaces and some of their basic properties are studied.

2. PRELIMINARIES

Definition 2.1. A subset A of a bitopological space (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is called
(i) $\mathfrak{I}_{1} \mathfrak{I}_{2}$ regular open set [2] if A $=\mathfrak{I}_{2} \operatorname{int}\left(\mathfrak{I}_{1} \mathrm{cl}(\mathrm{A})\right)$, $\mathfrak{J}_{1} \mathfrak{I}_{2}$ regular closed set if $\mathrm{A}=\mathfrak{J}_{2} \mathrm{cl}\left(\mathfrak{J}_{1}\right.$ int (A)).
(ii) $\mathfrak{I}_{\mathfrak{I}_{2}}$ semi-open set [1] if A $\subset \mathfrak{I}_{2} \mathrm{cl}\left(\mathfrak{J}_{1}\right.$ int (A)), $\mathfrak{I}_{1} \mathfrak{I}_{2}$ semi-closed set if $\mathfrak{J}_{2} \operatorname{int}\left(\mathfrak{I}_{1} \mathrm{cl}(\mathrm{A})\right) \subset$ A.
(iii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \alpha$-open set $[9]$ if $\mathrm{A} \subset \mathfrak{I}_{1}$ int $\left(\mathfrak{I}_{2} \mathrm{cl}\left(\mathfrak{J}_{1}\right.\right.$ int $\left.(\mathrm{A})\right)$), $\mathfrak{J}_{1} \mathfrak{I}_{2} \alpha$-closed set if $\mathfrak{I}_{1} \mathrm{cl}\left(\mathfrak{J}_{2} \operatorname{int}\left(\mathfrak{I}_{1} \mathrm{cl}(\mathrm{A})\right)\right) \subset$ A.
(iv) $\mathfrak{I}_{1} \mathfrak{J}_{2} \eta$-open set $[13]$ if $A \subset \mathfrak{J}_{1} \operatorname{int}\left(\mathfrak{I}_{2} \operatorname{cl}\left(\mathfrak{I}_{1} \operatorname{int}(A)\right)\right) \cup \mathfrak{J}_{2} \mathrm{cl}\left(\mathfrak{I}_{1}\right.$ int $\left.(A)\right), \mathfrak{J}_{1} \mathfrak{I}_{2} \eta$-closed set if $\mathfrak{I}_{1} \mathrm{cl}$ $\left(\mathfrak{J}_{2} \operatorname{int}\left(\mathfrak{J}_{1} \mathrm{cl}(\mathrm{A})\right)\right) \cap \mathfrak{J}_{2} \operatorname{int}\left(\mathfrak{J}_{1} \mathrm{cl}(\mathrm{A})\right) \subset \mathrm{A}$.

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 6 | June 2022

- Peer Reviewed Journal
(v) The finite union of $\mathfrak{I}_{1} \mathfrak{J}_{2}$-regular open sets is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi$-open set [12]. The complement of a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi$-open set is said to be $\mathfrak{I}_{1} \mathfrak{J}_{2}-\pi$-closed.

Definition 2.2. A subset A of a bitopological space (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is called
(i) $\mathfrak{I}_{1} \mathfrak{I}_{2}$ g-closed set $[4]$ if $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-open in X .
(ii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathbf{g}^{*}$-closed set $[\mathbf{1 1}]$ if \mathfrak{I}_{2}-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-g-open in X .
(iii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathbf{g}^{* *}$-closed set $[\mathbf{1 0}]$ if \mathfrak{I}_{2}-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-9*-open in X .
(iv) $\mathfrak{I}_{1} \mathfrak{I}_{2}$ g α-closed set $[9]$ if $\mathfrak{I}_{2} \alpha$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1} \alpha$-open in X .
(v) $\mathfrak{I}_{1} \mathfrak{I}_{2} \alpha \mathbf{g}$-closed set $[3]$ if $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-open in X .
(vi) $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathbf{g} \alpha^{*}$-closed set $[\mathbf{5}]$ if $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1} \alpha$-open in X .
(vii) $\mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{g}^{\#}$-closed set $[8]$ if \mathfrak{I}_{2}-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1} \alpha$ g-open in X .
(viii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathbf{g s}$-closed set $[4]$ if $\mathfrak{I}_{2} \mathrm{~s}$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-open in X .
(ix) $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathbf{s}$ g-closed set $[7]$ if $\mathfrak{I}_{2} \mathrm{~s}$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1} semi-open in X .
(x) $\mathfrak{I}_{1} \mathfrak{J}_{2} \mathbf{g \eta}$-closed set $[\mathbf{1 4}, \mathbf{1 5}]$ if $\mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is \mathfrak{I}_{1}-open in X .
(xi) $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g}$-closed set $[\mathbf{1 2}]$ if $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1} \pi$-open in X .

3. $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-CLOSED SETS

Definition 3.1. A subset A of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$) is called $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \boldsymbol{\pi} \eta$-closed if $\mathfrak{I}_{2} \eta$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1} \pi$-open in X .

The family of all $\mathfrak{I}_{1} \mathfrak{I}_{2}$-closed sets in a bitopological space $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is denoted by $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta \mathrm{C}\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$
Theorem 3.2. Every \mathfrak{I}_{2}-closed set is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathfrak{g} \eta$-closed.
Proof. Let A be any \mathfrak{I}_{2}-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{I}_{1} \pi$-open. Since every \mathfrak{I}_{2}-closed set is $\mathfrak{I}_{2} \eta$-closed, so $\mathfrak{I}_{2} \eta$-cl(A) $\subset \mathfrak{I}_{2} \mathrm{cl}(\mathrm{A})=\mathrm{A}$. Therefore, $\mathfrak{J}_{2} \eta$-cl(A) $\subset \mathrm{A} \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set.

Theorem 3.3. Every \mathfrak{I}_{2}-semi-closed set is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi$ g η-closed.
Proof. Let A be any \mathfrak{I}_{2}-semi-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{I}_{1} \pi$-open. Since every \mathfrak{J}_{2} semiclosed set is $\mathfrak{I}_{2} \eta$-closed, so $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{J}_{2} \operatorname{scl}(\mathrm{~A})=\mathrm{A}$. Therefore $\mathfrak{I}_{2} \eta$-cl(A) $\subset \mathrm{A} \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-$ closed set.

Theorem 3.4. Every $\mathfrak{I}_{2} \alpha$-closed set is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{2} \alpha$-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ and $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1} \pi$-open. Since every $\mathfrak{J}_{2} \alpha$-closed set is $\mathfrak{I}_{2} \eta$-closed, so $\mathfrak{J}_{2} \eta$-cl(A) $\subset \mathfrak{J}_{2} \alpha$-cl(A) $=\mathrm{A}$. Therefore $\mathfrak{I}_{2} \eta$-cl(A) $\subset \mathrm{A} \subset \mathrm{U}$. Hence A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta}$ closed set.

Theorem 3.5. Every \mathfrak{J}_{2} regular-closed set is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed.
Proof. Let A be any \mathfrak{I}_{2} regular-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and A $\subset \mathrm{U}$, where U is $\mathfrak{I}_{2} \pi$-open. Since every $\mathfrak{I}_{2^{-}}$ regular closed set is \mathfrak{J}_{2}-closed. So, by Theorem 3.2, A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi$ g η-closed set.

Theorem 3.6. Every $\mathfrak{I}_{2} \eta$-closed set is $\mathfrak{I}_{1} \mathfrak{J}_{2} g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{2} \eta$-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{I}_{1} \pi$-open. Since A is $\mathfrak{I}_{2} \eta$ - closed. Therefore $\mathfrak{I}_{2} \eta$-cl(A) $=\mathrm{A} \subset \mathrm{U}$. Hence A is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-closed set.

- Peer Reviewed Journal

Theorem 3.7. Every $\mathfrak{I}_{1} \mathfrak{J}_{2} g \eta$-closed set is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{J}_{2} g \eta$-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ then $\mathfrak{I}_{2} \eta-c l(A) \subset U$ whenever $A \subset U$, where U is $\mathfrak{J}_{1} \pi$-open and since every $\mathfrak{I}_{1} \pi$-open set is \mathfrak{I}_{1}-open. Given that A is $\mathfrak{J}_{1} \mathfrak{J}_{2} g \eta$-closed set such that $\mathfrak{J}_{2} \eta$-cl(A) $\subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

Theorem 3.8. Every $\mathfrak{J}_{1} \mathfrak{J}_{2}$ g-closed set is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{I}_{2}$ g-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1} \pi$ open and since every $\mathfrak{J}_{1} \pi$-open set is \mathfrak{I}_{1}-open. Since every \mathfrak{J}_{2}-closed set is \mathfrak{J}_{2} - η-closed, so $\mathfrak{J}_{2} \eta$-cl(A) \subset $\mathfrak{J}_{2} \operatorname{cl}(\mathrm{~A}) \subset \mathrm{U}$. Therefore $\mathfrak{J}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.
Theorem 3.9. Every $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi$ g-closed set is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g$-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \operatorname{cl}(\mathrm{~A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$ open. Since every \mathfrak{I}_{2}-closed set is $\mathfrak{I}_{2}-\eta$-closed, so $\mathfrak{J}_{2} \eta$-cl$(A) \subset \mathfrak{J}_{2} \mathrm{cl}(A) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta$-cl(A) $\subset \mathrm{U}$. Hence A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-closed set.

Theorem 3.10. Every $\mathfrak{I}_{1} \mathfrak{I}_{2}$ g*-closed set is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathrm{~g}^{*}$-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$ open and since every $\mathfrak{I}_{1} \pi$-open set is \mathfrak{I}_{1} g-open. Given that A is $\mathfrak{I}_{1} \mathfrak{I}_{2} g^{*}$-closed set such that $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $\mathfrak{I}_{2} \eta-\mathrm{cl}(A) \subset \mathfrak{J}_{2} \mathrm{cl}(A) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(A) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set.

Theorem 3.11. Every $\mathfrak{I}_{1} \mathfrak{I}_{2} \mathrm{~g}^{* *}$-closed set is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-closed.
Proof. Let A be any $\mathfrak{J}_{1} \mathfrak{J}_{2} g^{* *}$-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \operatorname{cl}(A) \subset U$ whenever $A \subset U$, where U is $\mathfrak{J}_{1} \pi$ open and since every $\mathfrak{I}_{1} \pi$-open set is $\mathfrak{I}_{1} g^{*}$-open. Given that A is $\mathfrak{I}_{1} \mathfrak{I}_{2} g^{* *}$-closed set such that $\mathfrak{I}_{2} \operatorname{cl}(\mathrm{~A}) \subset$ U. But we have $\mathfrak{J}_{2} \eta$-cl $(A) \subset \mathfrak{J}_{2} \mathrm{cl}(A) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta$-cl $(A) \subset \mathrm{U}$. Hence A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

Theorem 3.12. Every $\mathfrak{J}_{1} \mathfrak{J}_{2} g^{\#}$-closed set is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{J}_{2} \mathrm{~g}^{\#}$-closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1} \pi$ open and since every $\mathfrak{I}_{1} \pi$-open set is $\mathfrak{J}_{1} \alpha$ g-open. Given that A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \mathrm{~g}^{\#}$-closed set such that $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{J}_{2} \operatorname{cl}(\mathrm{~A}) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

Theorem 3.13. Every $\mathfrak{J}_{1} \mathfrak{J}_{2}$ gs-closed set is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{I}_{2}$ gs-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ then $\mathfrak{J}_{2} \mathrm{~S}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$ open and since every $\mathfrak{J}_{1} \pi$-open set is \mathfrak{I}_{1}-open. Given that A is $\mathfrak{I}_{1} \mathfrak{J}_{2}$ gs-closed set such that $\mathfrak{J}_{2} \operatorname{s}$-cl(A) $\subset \mathrm{U}$. But we have $\mathfrak{J}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{J}_{2} \mathrm{~S}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

Theorem 3.14. Every $\mathfrak{I}_{1} \mathfrak{J}_{2}$ sg-closed set is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{I}_{2}$ sg-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ then $\mathfrak{I}_{2} \operatorname{sicl}(\mathrm{~A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1} \pi$ open and since every $\mathfrak{J}_{1} \pi$-open set is \mathfrak{J}_{1} S-open. Given that A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \operatorname{sg}$-closed set such that $\mathfrak{I}_{2} S$-cl(A) $\subset U$. But we have $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{I}_{2} \mathrm{~S}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set.

Theorem 3.15. Every $\mathfrak{J}_{1} \mathfrak{I}_{2} \alpha$ g-closed set is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta}$-closed.
Proof. Let A be any $\mathfrak{J}_{1} \mathfrak{J}_{2} \alpha$ g-closed set in $\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \alpha$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$-open and since every $\mathfrak{J}_{1} \pi$-open set is \mathfrak{I}_{1}-open. Given that A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \alpha$ g-closed set such that $\mathfrak{J}_{2} \alpha$-cl(A) $\subset \mathrm{U}$. But we have $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{J}_{2} \alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 6 | June 2022

- Peer Reviewed Journal

Theorem 3.16. Every $\mathfrak{I}_{1} \mathfrak{I}_{2} g \alpha$-closed set is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta}$-closed.
Proof. Let A be any $\mathfrak{I}_{1} \mathfrak{J}_{2} g \alpha$-closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ then $\mathfrak{I}_{2} \alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$-open and since every $\mathfrak{I}_{1} \pi$-open set is $\mathfrak{J}_{1} \alpha$-open. Given that A is $\mathfrak{I}_{1} \mathfrak{J}_{2}$ g α-closed set such that $\mathfrak{J}_{2} \alpha$-cl(A) $\subset \mathrm{U}$. But we have $\mathfrak{J}_{2} \eta-\mathrm{cl}(A) \subset \mathfrak{J}_{2} \alpha-\mathrm{cl}(A) \subset \mathrm{U}$. Therefore $\mathfrak{I}_{2} \eta-\mathrm{cl}(A) \subset \mathrm{U}$. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set.

Theorem 3.17. Every $\mathfrak{J}_{1} \mathfrak{J}_{2} g \alpha^{*}$-closed set is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed.
Proof. Let A be any $\mathfrak{J}_{1} \mathfrak{J}_{2} \mathrm{~g} \alpha^{*}$-closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{J}_{1} \pi$ open and since every $\mathfrak{J}_{1} \pi$-open set is $\mathfrak{I}_{1} \alpha$-open. Given that A is $\mathfrak{I}_{1} \mathfrak{I}_{2}$ g α^{*}-closed set such that $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $\mathfrak{J}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{J}_{2} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $\mathfrak{J}_{2} \eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set.

Remark 3.18. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

Example 3.19. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{a\},\{b, d\},\{a, b, d\}\}$ and $\mathfrak{I}_{2}=\{X, \phi,\{b\},\{c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{b}\}$ is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-closed but not \mathfrak{J}_{2} closed.

Example 3.20. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{J}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{b}$, $\mathrm{c}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{c}\}$ is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed but not \mathfrak{I}_{2} semi-closed.

Example 3.21. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{a\},\{b, d\},\{a, b, d\}\}$ and $\mathfrak{I}_{2}=\{X, \phi,\{b\},\{c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{b}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed but not $\mathfrak{J}_{2} \alpha$-closed.

Example 3.22. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{a\},\{b, d\},\{a, b, d\}\}$ and $\mathfrak{I}_{2}=\{X, \phi,\{b\},\{c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{c}, \mathrm{d}\}$ is $\mathfrak{J}_{1} \mathfrak{J} \pi \mathrm{~g} \eta$-closed but not \mathfrak{I}_{2} regular closed.

Example 3.23. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{a\},\{b, d\},\{a, b, d\}\}$ and $\mathfrak{I}_{2}=\{X, \phi,\{b\},\{c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{b}, \mathrm{c}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed but not $\mathfrak{J}_{2} \eta$-closed.

Example 3.24. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{J}_{2}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{d}\}$ is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed but not $\mathfrak{J}_{1} \mathfrak{J}_{2}$ g-closed.

Example 3.25. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{a}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed but not $\mathfrak{J}_{1} \mathfrak{I}_{2} \mathrm{~g}^{*}$-closed.

Example 3.26. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ and $\mathfrak{J}_{2}=\{X, \phi,\{a\},\{b, d\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{a}, \mathrm{d}\}$ is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed but not $\mathfrak{I}_{1} \mathfrak{J}_{2}$ sg-closed.

Example 3.27. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{a}\}$ is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed but not $\mathfrak{I}_{1} \mathfrak{J}_{2} \alpha$ g-closed.

Example 3.28. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{I}_{2}=\{X, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. Then the set $\mathrm{A}=\{\mathrm{a}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed but not $\mathfrak{J}_{1} \mathfrak{J}_{2}$ g α-closed.

Example 3.29. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{X, \phi,\{\mathrm{~d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$. The set $\mathrm{A}=\{\mathrm{d}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta}$-closed but not \mathfrak{I}_{2}-closed.

Remark 3.30. Let A and B be two $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed sets, then their union and intersection need not be $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed as shown from the following examples.

Example 3.31. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}$, $\{b, c, d\}\}$. Here the sets $A=\{b\}$ and $B=\{c\}$ are $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi g \eta$-closed sets. But their union $A \cup B=\{b, c\}$ is $\operatorname{not} \mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed.

Example 3.32. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{J}_{2}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}$, $b, d\}\}$. Here the sets $A=\{a, c, d\}$ and $B=\{b, c, d\}$ are $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi g \eta$-closed. But their intersection $A \cap B=\{c$, $\mathrm{d}\}$ is not $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-closed.

Theorem 3.33. Let A be a subset of a bitopological space ($X, \mathfrak{I}_{1}, \mathfrak{J}_{2}$). If A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed, $\mathfrak{I}_{2} \eta c l(A)$ A does not contain any non-empty $\mathfrak{J}_{1} \pi$-closed set.
Proof. Suppose that A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed. Let M be a non-empty $\mathfrak{J}_{1} \pi$-closed set in X such that $M \subset$ $\mathfrak{J}_{2} \eta \mathrm{cl}(\mathrm{A})-\mathrm{A}$. Then $\mathrm{A} \subset X-\mathrm{M}$. Since A is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set and $X-M$ is $\mathfrak{J}_{1} \pi$-open, $\mathfrak{J}_{2} \eta \mathrm{cl}(\mathrm{A}) \subset X-$ M. That is, $\mathrm{M} \subset \mathrm{X}-\mathfrak{J}_{2} \eta \mathrm{cl}(\mathrm{A})$. So $\mathrm{M} \subset\left(\mathrm{X}-\mathfrak{J}_{2} \eta \mathrm{cl}(\mathrm{A})\right) \cap\left(\mathfrak{J}_{2} \eta \operatorname{cl}(\mathrm{~A})-\mathrm{A}\right)$. Therefore $\mathrm{M}=\phi$.

Corollary 3.34. Let A be $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed. Then A is $\mathfrak{I}_{2} \eta$-closed if and only if $\mathfrak{J}_{2} \mathrm{cl}(\mathrm{A})-\mathrm{A}$ is $\mathfrak{J}_{1} \pi$-closed. Proof. Suppose that A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed and $\mathfrak{J}_{2} \eta$-closed. Since A is $\mathfrak{I}_{2} \eta$-closed, we have $\mathfrak{J}_{2} \eta$-cl(A) $=A$. Therefore, $\mathfrak{I}_{2} \eta-\mathrm{cl}(\mathrm{A})-\mathrm{A}=\phi$ which is $\mathfrak{I}_{1} \pi$-closed.

Conversely, suppose that A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed and $\mathfrak{I}_{2} \mathrm{cl}(\mathrm{A})-\mathrm{A}$ is $\mathfrak{J}_{1} \pi$-closed. Since A is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-closed, we have $\mathfrak{I}_{2} \eta$-cl(A) - A contains no nonempty $\mathfrak{I}_{1} \pi$-closed set by Theorem 3.33. Since $\mathfrak{I}_{2} \eta$-cl(A) - A is itself $\mathfrak{J}_{1} \pi$-closed, we have $\mathfrak{J}_{2} \eta-\operatorname{cl}(A)-A=\phi$. Therefore, $\mathfrak{J}_{2} \eta-\operatorname{cl}(A)=A$ implies that A is $\mathfrak{J}_{2} \eta$-closed.

Theorem 3.35. Let A and B be any two subsets of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}$), such that $\mathrm{A} \subset \mathrm{B} \subset$ $\mathfrak{J}_{2} \eta \mathrm{cl}(\mathrm{A})$. If A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed, then B is also $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-closed.
Proof. Let $\mathrm{B} \subset \mathrm{P}$ and P is $\mathfrak{I}_{1} \pi$-open in X . Since $\mathrm{A} \subset \mathrm{B}$, we have $\mathrm{A} \subset \mathrm{P}$. Since A is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi$ g η-closed, we have $\mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{A}) \subset \mathrm{P}$. As $\mathrm{B} \subset \mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{A}), \mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{B}) \subset \mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{A})$. Hence $\mathfrak{I}_{2} \eta \mathrm{cl}(\mathrm{B}) \subset \mathrm{P}$. Therefore B is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-$ closed.

4. $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-OPEN SETS

Definition 4.1. A subset A of $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is said to be $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \boldsymbol{g} \eta$-open in X if its complement X - A is $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi$ g η closed in (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

Theorem 4.2. A subset A of a bitopological space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open if and only if $\mathrm{P} \subset \mathfrak{I}_{2} \eta$ $\operatorname{int}(\mathrm{A})$ whenever $\mathrm{P} \subset \mathrm{A}$ and P is $\mathfrak{J}_{1} \pi$-closed in X .
Proof. Let A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open. Let $\mathrm{P} \subset \mathrm{A}$ and P is $\mathfrak{I}_{1} \pi$-closed in X . Then $\mathrm{A}^{\mathrm{c}} \subset \mathrm{P}^{\mathrm{c}}$ and P^{c} is $\mathfrak{I}_{1} \pi$-open in X . Since A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open, we have A^{c} is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed. Hence $\mathfrak{I}_{2} \eta$-cl($\left.A^{c}\right) \subset P^{c}$. Since $\mathfrak{I}_{2} \eta$-cl $(A)=\left(\mathfrak{J}_{2} \eta-\right.$ $\operatorname{int}(\mathrm{A}))^{\mathrm{c}}$. Consequently, $\left(\mathfrak{I}_{2} \eta-\operatorname{int}(\mathrm{A})\right)^{\mathrm{c}} \subset \mathrm{P}^{\mathrm{c}}$. Therefore $\mathrm{P} \subset \mathfrak{I}_{2} \eta-\operatorname{int}(\mathrm{A})$.

Conversely, suppose that $\mathrm{P} \subset \mathfrak{J}_{2} \eta$ - $\operatorname{int}(\mathrm{A})$ whenever $\mathrm{P} \subset \mathrm{A}$ and P is $\mathfrak{I}_{1} \pi$-closed in X . Let $\mathrm{A}^{\mathrm{c}} \subset \mathrm{Q}$ and Q is $\mathfrak{I}_{1} \pi$-open in X. Then $\mathrm{Q}^{\mathrm{c}} \subset \mathrm{A}$ and Q^{c} is $\mathfrak{J}_{1} \pi$-closed in X. By hypothesis, $\mathrm{Q}^{\mathrm{c}} \subset \mathfrak{J}_{2} \eta$ - $\operatorname{int}(\mathrm{A})$. That is, $\left(\mathfrak{J}_{2} \eta-\right.$ $\operatorname{int}(\mathrm{A}))^{\mathrm{c}} \subset \mathrm{Q}$. Therefore, $\mathfrak{I}_{2} \eta$-cl($\left.\mathrm{A}^{\mathrm{c}}\right) \subset \mathrm{Q}$. Consequently A^{c} is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-closed. Hence A is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-open.

Theorem 4.3. Let A and B be subsets of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}$) such that $\mathfrak{I}_{2} \eta-\operatorname{int}(\mathrm{A}) \subset \mathrm{B} \subset \mathrm{A}$. If A is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open, then B is also $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open.
Proof. Suppose that A and B are subsets of a bitopological space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ such that $\mathfrak{I}_{2} \eta$-int $(A) \subset B \subset A$, let A be $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open. Then $A^{c} \subset B^{c} \subset \mathfrak{I}_{2} \eta$-cl($\left.A^{c}\right)$. Since A^{c} is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed. By Theorem 3.35, B^{c} is $\mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta}$-closed in X. Therefore B is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-open.

5. $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \boldsymbol{\eta}$-CLOSURE

Definition 5.1. For a subset A of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$), the intersection of all $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed sets containing A is called the $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closure of A and is denoted by $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-cl(A). That is,

$$
\mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta \text {-cl}(\mathrm{A})=\cap\left\{\mathrm{M}: \mathrm{A} \subset \mathrm{M}, \mathrm{M} \text { is } \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta \text {-closed in } \mathrm{X}\right\} .
$$

Remark 5.2. If A and B are any two subsets of a bitopological space ($X, \mathfrak{I}_{1}, \mathfrak{J}_{2}$), then
(i) $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta-\mathrm{cl}(\mathrm{X})=\mathrm{X}$.
(ii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\phi)=\phi$.

Example 5.3. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\mathfrak{I}_{2}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. The $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-closed sets are $\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}$, $\mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{c}\}$. Then $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A})=\{\mathrm{a}, \mathrm{c}\}, \mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{X})=\mathrm{X}, \mathfrak{J}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta}-$ $\operatorname{cl}(\phi)=\phi$.

Remark 5.4. If A and B are any two subsets of a bitopological space ($X, \mathfrak{I}_{1}, \mathfrak{J}_{2}$), then
(i) $\mathrm{A} \subset \mathrm{B} \Rightarrow \mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta}-\mathrm{cl}(\mathrm{A}) \subset \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta}$-cl(B).
(ii) $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}\left(\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta \mathrm{cl}(\mathrm{A})\right)=\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A})$.

EPRA International Journal of Research and Development (IJRD)

Volume: 7 | Issue: 6 | June 2022

- Peer Reviewed Journal
(iii) $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A} \cup \mathrm{B}) \supset \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A}) \cup \mathfrak{I}_{\mathfrak{I}} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{B})$
(iv) $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A} \cap \mathrm{B}) \subset \mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A}) \cap \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{B})$.

Theorem 5.5. A is a nonempty subset of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$). $\mathrm{x} \in \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-cl(A) if and only if $\mathrm{A} \cap \mathrm{V} \neq \phi \forall \mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta$-open set V containing x.
Proof. A is a nonempty subset of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$) and $\mathrm{x} \in \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A})$. Suppose there exists a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open set V containing x such that $\mathrm{A} \cap \mathrm{V}=\phi$. Then $\mathrm{A} \subset \mathrm{X}-\mathrm{V}$ and $\mathrm{X}-\mathrm{V}$ is a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta}$ closed set and so $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \eta \mathrm{cl}(\mathrm{A}) \subset \mathrm{X}-\mathrm{V}$. Therefore $\mathrm{x} \notin \mathrm{V}$ which is a contradiction. Hence $\mathrm{A} \cap \mathrm{V} \neq \phi \forall$ $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-open set V containing x.

Conversely, A is a nonempty subset of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$) and $\mathrm{x} \in \mathrm{X}$ is such that $\mathrm{A} \cap \mathrm{V} \neq \phi$ $\forall \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-open set V containing x. $\mathrm{x} \notin \mathfrak{J}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta \mathrm{cl}(\mathrm{A})$.
\Rightarrow There exists a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-closed set F such that $\mathrm{A} \subset \mathrm{F}$ and $\mathrm{x} \notin \mathrm{F}$.
\Rightarrow There exists a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-open set $\mathrm{X}-\mathrm{F}$ containing x and $\mathrm{A} \cap(\mathrm{X}-\mathrm{F})=\phi$ which is a contradiction. Therefore $\mathrm{x} \in \mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta-\mathrm{cl}(\mathrm{A})$.

6. $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-NEIGHBOURHOODS

Definition 6.1. Let X be a bitopological space and let $x \in X$. A subset N of X is said to be a $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta-$ neighbourhood of x if and only if there is a $\mathfrak{J}_{1} \mathfrak{I}_{2} \pi g \eta$-open set G such that $x \in G \subset N$.

Definition 6.2. A subset N of a bitopological space X , is called a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \boldsymbol{\pi} \eta$-neighbourhood of $\mathrm{A} \subset \mathrm{X}$ if and only if there exists a $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-open set G such that $\mathrm{A} \subset \mathrm{G} \subset \mathrm{N}$.

Theorem 6.3. Every neighbourhood N of $x \in X$ is a $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-neighbourhood of $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.
Proof. Let N be a neighbourhood of a point $x \in X$. To prove that N is a $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-neighbourhood of x . By Definition 6.2, there exist an open set G such that $\mathrm{x} \in \mathrm{G} \subset \mathrm{N}$. As every open set is $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi \mathrm{~g} \mathrm{\eta} \eta$-open, so G is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi g \eta$-open. Therefore, we have $\mathrm{x} \in \mathrm{G} \subset \mathrm{N}$. Hence N is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-neighbourhood of X .

Remark 6.4. In general a $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-neighbourhood N of $\mathrm{x} \in \mathrm{X}$ need not to be a neighbourhood of x in X , as in the following example.

Example 6.5. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\phi=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$. The set $\{\mathrm{a}, \mathrm{c}\}$ is $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-neighbourhood of the point c , since the $\mathfrak{I}_{1} \mathfrak{I}_{2} \pi \mathrm{~g} \eta$-open set $\{\mathrm{a}, \mathrm{c}\}$ is such that $\mathrm{c} \in\{\mathrm{a}, \mathrm{c}\} \subset\{\mathrm{a}, \mathrm{c}\}$. However the set $\{\mathrm{a}, \mathrm{c}\}$ is not a neighbourhood of the point c , since no open set G exists such that $c \in G \subset\{a, c\}$.

7. CONCLUSION

In this paper, a new class of sets namely $\pi \mathrm{g} \mathrm{\eta} \eta$-closed sets, $\pi \mathrm{g} \eta$-closure of a set, $\pi \mathrm{g} \eta$-open sets, $\pi \mathrm{g} \mathrm{\eta}$ neighbourhoods in bitopological spaces are studied and some of their basic properties are discussed. The relationships among closed, α-closed, s-closed, η-closed, $g \eta$-closed and other generalized closed sets are investigated. Several examples are provided to illustrate the behavior of these new class of sets. The $\mathfrak{I}_{1} \mathfrak{J}_{2} \pi g \eta$-closed set can be used to derive a new decomposition of closed map, open map, continuity, homeomorphism, and new separation axioms. This idea can be extended to topological ordered spaces, bitopological ordered spaces and fuzzy topological spaces.

SJIF Impact Factor 2022: 8.197| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016
 ISSN: 2455-7838(Online)
 EPRA International Journal of Research and Development (IJRD)
 Volume: 7 | Issue: 6 | June 2022
 - Peer Reviewed Journal

REFERENCES

1. Bose. S, Semi-open Sets, semi continuity and semi open mapping in bitopological spaces, Bull. Calcutta Math. Soc. 73(1981) 237-246.
2. Bose. S, Sinha. D, Almost open, almost closed, θ-continuous and almost compact mappings in bitopological spaces. Bull. Calcutta Math. Soc. 73(1981), 345-354.
3. El-Tantawi. O. A, Abu-Donia. H. M, Generalized separation axioms in bitopological spaces, Arab. J. Sci. Eng. 1 (2005) 117-129.
4. Fukutake. T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. part III, 35 (1986), 19-28.
5. Imran Q. H., Generalized alpha star star closed sets in bitopological spaces, Gen. Math. Notes, Vol. 22, no. 2, (2014), 93-102.
6. Kelly. J. C., Bitopological spaces, Proc. London Math. Soc. (3), 13(1962), 71-81.
7. Khedr. F. H., Al-Saadi. H. S., On pairwise semi-generalized closed sets, J. King Abdul Aziz Univ. Sci. 20 (4) (2008), September.
8. Navalagi G., Bhat M. K., rayanagoudar and Patil P. G., On $g^{\#}$-closed sets in bitopological spaces, Vol. 2, No. 1-2, (2009), 15-26.
9. Neelamegarajan R. and Jamal M. Mustafa, Generalization of α-open sets in bitopological spaces, Annals of the University of Craiova, Mathematics and Com. Sci. Series 9. Vol. 39(1), (2012), 1-7.
10. Veronica Vijayan, Ponnuthai Selvarani, and Pauline Mary Helen M., $g^{* *}$-closed sets in bitopological spaces, Int. Jour. of Math. Archive, 3(7), (2012), 2728-2734.
11. Sheik John. M, Sundaram. P, g^{*}-closed sets in bitopological spaces, Indian J. Pure Appl. Math., 35, no. 1 (2004), 71-80.
12. Sivanthi S., On ${ }^{\#}$ regular generalized open sets in bitopological spaces, Int. J. of Res. and Analytical Reviews, Vol. 7, Issue 1, (2020), 57-62.
13. D. Subbulakshmi, K. Sumathi, K. Indirani, η-open sets in topological spaces, International J. of Innovative and Exploring Engineering, Vol. 8, Issue 10 S, 2019, 276-282.
14. D. Subbulakshmi, K. Sumathi, K. Indirani, g η-continuous in topological spaces, International J. of Innovative and Exploring Engineering, Vol. 8, Issue 3, 2019, 677-282.
15. Sumathi K., Arunachalam T., Subbulakshmi D. and Indirani K, GH-closed sets in bitopological spaces, Turkish Jour. of Ply. And Reha., 32(3), (2020), 5844-5848.
