Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
Mrs. M. Josephin Immaculate Ruba

EDITIORAL ADVISORS
1. Prof. Dr. Said I. Shalaby, MD, Ph.D.
 Professor & Vice President
 Tropical Medicine,
 Hepatology & Gastroenterology, NRC,
 Academy of Scientific Research and Technology,
 Cairo, Egypt.
2. Dr. Mussie T. Tessema,
 Associate Professor,
 Department of Business Administration,
 Winona State University, MN,
 United States of America.
3. Dr. Mengsteb Tesfayohannes,
 Associate Professor,
 Department of Management,
 Sigmund Weis School of Business,
 Susquehanna University,
 Selinsgrove, PENN,
 United States of America.
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU),
 UAE.
5. Dr. Anne Maduka,
 Assistant Professor,
 Department of Economics,
 Anambra State University,
 Igbariam Campus,
 Nigeria.
6. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry,
 Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India.
7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
 Assistant Professor,
 School of Social Science,
 University of Jammu,
 Jammu, Jammu & Kashmir, India.
8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSSR Research Institute,
 New Delhi-110070, India.
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural
 Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor (2017): 5.705

EPRA International Journal of
Research & Development
(IJRD)
Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 3, Issue:9, September 2018

Published By:
EPRA Journals

CC License
CONSTRUCTION COST MANAGEMENT IN RESOURCE
BASED ECONOMY

B. Sekhar
PG student Department of Civil Engineering, SSSS College of Engineering, Vadiyampeta, Anantapur, A.P, India

T. Chandra Mouli
Assistant Professor Department of civil Engineering, SSSS College of Engineering, Vadiyampeta, Anantapur, A.P, India

ABSTRACT
Resource Based Economy tested according to criteria formulated from the construction cost management best practices. A cost management plan modeled to demonstrate the possibility of construction management under a new socio economic system, which counts the consumed natural resources by construction as the dry cost to the environment.

KEYWORDS: Construction Cost Management, Resource Based Economy.

INTRODUCTION
Construction accounts for one of the basic needs for all humanity throughout the history of the world. It consumes natural resources, both to form the physical part of the construction, and to assist in construction in the form of energy and scaffolding for examples. The natural resources that are parts of the physical matter of construction, which forms the main components, have changed through research and development, from natural stone bricks, to reinforced concrete and steel structures. They are mined and processed to satisfy the specified characteristics, as required by designers.

Cost management has been a very important part of all projects, because it provides the information required to evaluate the profits and losses, before, during, and after the projects. Resource management addresses the availability of all resources, which are consumed totally or partially by the projects, calculated as dry costs or overheads.

Technology is progressing exponentially and inventions in the robotics field are opening new potentials for Artificial Intelligence (AI) and Automation future, where human interaction in manufacturing and construction is being decreased and replaced by machines. In order to investigate deeply in ideas related to the future of human kind, several aspects are researched to clarify the vision from several points of views. One of these ideas is The Venus Project (TVP) which considers a civilization that is based on three aspects, Society, Environment, and Technology. Progressing from the current technological and environmental status, society is expected to thrive to the level where humanity can survive without war, poverty and hunger.

OBJECTIVES OF THE STUDY
The goal of this study is to analyze ways to improve the efficiency of project cost management. To
achieve this goal, it was necessary to solve the following objectives:
1) To analyze the main components that affects the cost of the project.
2) To analyze the main risks of construction and investment projects in a crisis.
3) To identify the benefits of using BIM technologies in project cost management.

LITERATURE REVIEW
Renata statiatk-Betlejewska,marek potkany al, 2015; His paper introduces an instance of development of cost examination for wooden vitality proficient house that meets reasonable viewpoints. From this examination it was reasoned that expenses of development costs of vitality house are higher than conventional venture. Tatyana Simankina, Jasmina cetkovic, Nataliaverstina, Evgeny Evseev et, 2017, His paper represents that Economy significantly affects primarily the project cost management. It was concluded that cost management of projects directly depends on certain measures. Flore bridoux et al, 2010, his paper extends the resource based view of the firm to give connection between resources and competition. He was concluded that developed a general framework integrating resources and competitive environment as a sources of firm competitive advantage and performance. Dr. Arshad ali amjad et al, 2005, His paper presents that cost benefits analysis, CBA is for evaluating the benefits and drawbacks associated with any particular project. It was concluded that CBA analysis demonstrates the financial applications.

TESTING PROCEDURE
Survey Method:
The survey conducted by Iyer and Jha, 2005 give some indication off the factors affecting the cost performance of Indian construction projects. In this survey the questionnaire was piloted with two associates from the Indian construction industry- a senior Architect and a project control manager. A total of 51 responses were obtained. The respondents comprise of 21 architects, 9 project managers, 2 surveyors and 19 engineers.

According to Project management Book of Knowledge issued by Project Management Institute (PMI) there are four processes in project cost management knowledge area.
1. **Plan Cost Management:** “The process that establishes the policies, procedures, and documentation for planning, managing, expending, and controlling project costs.”
2. **Estimate Costs:** “The process of developing an approximation of the monetary resources needed to complete project activities.”
3. **Determine Budget:** “The process of aggregating the estimated costs of individual activities or work packages to establish an authorized cost baseline.”
4. **Control Costs:** “The process of monitoring the status of the project to update the project costs and managing changes to the cost baseline.”

The final result of the system is a cost administration show that records for the characteristic assets that structures the volume of the development as the primary dry cost. Vitality isn't presented as dry cost, yet as a free asset, since innovation is getting towards free vitality. Additionally with the computerization of development being under innovative work, it is relied upon to include least human communication inside development forms. For straightforwardness, the layers and the plan blend are introduced on a general scale, and the amounts of materials and normal assets are evaluated generally.

Case study 1 (New Construction):
Case study 1 investigates the construction of a new rural road, single carriage way, starting with the excavation and earth work, until the final layer of asphalt. The road is 60 km long with width of 10.5 meters for the two asphalt layers, and 11 meters for the sub-base.
Fig. 1: Cross Section terminology - Rural Road Unkerbed Single Carriageway

Table 1: The total quantities used for the case study 1

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subgrade Fill</td>
<td>cu.m</td>
<td>175000</td>
<td>Procured</td>
</tr>
<tr>
<td>2</td>
<td>Subgrade Cut</td>
<td>cu.m</td>
<td>15000</td>
<td>Disposed</td>
</tr>
<tr>
<td>3</td>
<td>Rock Demolition</td>
<td>cu.m</td>
<td>15000</td>
<td>Disposed</td>
</tr>
<tr>
<td>4</td>
<td>Base Coarse</td>
<td>sqm</td>
<td>660000</td>
<td>25cm thick</td>
</tr>
<tr>
<td>5</td>
<td>MCO-Medium curing cutback asphalt</td>
<td>sqm</td>
<td>630000</td>
<td>1.5 kg/m²</td>
</tr>
<tr>
<td>6</td>
<td>Asphalt Layer 1</td>
<td>sqm</td>
<td>630000</td>
<td>6cm thick</td>
</tr>
<tr>
<td>7</td>
<td>RC3000-Rapid curing cutback Asphalt</td>
<td>sqm</td>
<td>630000</td>
<td>0.5 kg/m²</td>
</tr>
<tr>
<td>8</td>
<td>Asphalt Layer 2</td>
<td>Sqa</td>
<td>630000</td>
<td>5cm thick</td>
</tr>
</tbody>
</table>
Table 2 Procured and Disposed quantities for case study 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procured petroleum products</td>
<td>Barrels</td>
<td>8152</td>
<td></td>
</tr>
<tr>
<td>Dispose rocks and ground</td>
<td>Cubic meter</td>
<td>-30000</td>
<td></td>
</tr>
<tr>
<td>Procure aggregates and water</td>
<td>Cubic meter</td>
<td>853458</td>
<td></td>
</tr>
</tbody>
</table>

Case study 2 (Road Rehabilitation):
Case study 2 investigates the rehabilitation of a road, where the final layer is to be removed and another layer with the same thickness is added instead.

Table 3 The quantities of the materials used in case study 2

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asphalt Layer removal</td>
<td>Sqm</td>
<td>630000</td>
<td>5 cm thick</td>
</tr>
<tr>
<td>2</td>
<td>RC3000-Rapid curing cutback asphalt</td>
<td>Sqm</td>
<td>630000</td>
<td>0.5 kg/m2</td>
</tr>
<tr>
<td>3</td>
<td>Surface asphalt Layer</td>
<td>Sqm</td>
<td>630000</td>
<td>5 cm thick</td>
</tr>
</tbody>
</table>

Table 4 Procured and Disposed quantities for case study 2

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procured petroleum products</td>
<td>Barrels</td>
<td>4023</td>
<td></td>
</tr>
<tr>
<td>Dispose rocks and ground</td>
<td>Cubic meter</td>
<td>-52500</td>
<td></td>
</tr>
<tr>
<td>Procure aggregates and water</td>
<td>Cubic meter</td>
<td>59381</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

Fig.2: Status of industry and annual turnover
Fig.3: Success criteria and different professions

Fig.4: Need for clearly defined structure and extent to which pm can provide structure
Fig.5: Obstacles to PM and encouragement required from organizations
CONCLUSIONS

1. Resource Based Economy can be applied to the cost management model. If it is treated as a national project, the Venus project can be the starting point to a new socio-economical system that is suitable to all people, where the natural resources are maintained, and the supply exceeds the demand.

2. In addition, when considering the rate of renewal of natural resources, it is the opposite of the inflation in the monetary system, as the value of natural resources increases when used later than now. In the monetary system, and due to inflation, money loses its value, that is one reason, it is better to use the money now than later, which in return means using more resources now than later.

3. While in resource based economy, when the resources are left for the next generations, they increase, either by the rate of renewal, or the discovery of new resources.

REFERENCES

