SEM ANALYSIS OF Ni₃Pb₂S₂ THIN FILMS PRODUCED BY CHEMICAL BATH DEPOSITION TECHNIQUE IN THE PRESENCE OF THE Na₂EDTA

Ho Soonmin
*Professor,
Center for American Education,
INTI International University,
Putra Nilai, 71800,
Negeri Sembilan,
MALAYSIA

ABSTRACT
The Ni₃Pb₂S₂ thin films have been deposited on to substrate (soda lime glass slide) under different deposition times by using chemical bath deposition technique. In this work, disodium ethylenediaminetetraacetate dihydrate (Na₂EDTA) was used as complexing agent. So far, this deposition technique is known as the cheapest and easiest method as reported by many researchers. In this work, the scanning electron microscopy (SEM) was used to study the morphologies of Ni₃Pb₂S₂ films. The best result could be observed for the films prepared at 1 hour. These films exhibited uniform, compact with diameters of 0.4 to 2 µm.

KEYWORDS: Semiconductor, Ni₃Pb₂S₂ thin films, ternary, scanning electron microscopy, chemical bath deposition

INTRODUCTION
Thin films have been synthesized by using various deposition techniques. Generally, these deposition techniques could be divided into two groups such as physical and chemical deposition method. For example, spray pyrolysis¹, chemical bath deposition method², electro deposition method³, thermal evaporation method⁴, hydrothermal method⁵, SILAR technique⁶ and chemical vapor deposition⁷ have been reported by many researchers. They choose chemical bath deposition method because of simple equipment⁸, large scale production⁹, low material wastage and low cost¹⁰. The obtained films could be used in wide applications including solar cell¹¹, photoconductor, holographic recording media¹², infrared detector¹³, photocatalysis¹⁴, light emitting diode¹⁵, hydrogen generation¹⁶, laser screen, sensor device¹⁷ and thin film transistors¹⁸.

The main objective in this work is to produce ternary thin films via chemical bath deposition in the presence of complexing agent. This is the first time, Ni₃Pb₂S₂ thin films were synthesized using Na₂EDTA. Scanning electron microscopy was employed to investigate the morphologies of obtained films.

METHODOLOGY
Thin films were produced by using aqueous solutions of nickel (II) sulfate, lead (II) nitrate, sodium thiosulfate and Na₂EDTA. 25 mL of 0.1 M Na₂EDTA was placed into separate beakers (25 mL of 0.12 M of nickel (II) sulfate and 25 mL of 0.12 M lead (II) nitrate). The components of a mixture were physically mixed together and at the same time, 25 mL of 0.4 M of sodium thiosulfate was added. In this work, films were grown onto substrate under various deposition times such as 20, 40, 60 and 80 minutes. The soda lime glass slide was used as substrate during the deposition process at temperature of 63 °C, pH 1.2. The substrate was placed vertically into the bottom of the beaker. Before use, glass slides were treated for 30 min with ultrasonic wave in the bath of ethanol and then rinsed with deionized water. After complete deposition process, the obtained films were rinsed with distilled water and finally dried at 85 °C for 24 hours. Surface morphology was studied by JEOL (JSM-6400) scanning electron microscopy operating at an accelerating voltage of 20 kV under 5000X magnification.
RESULTS AND DISCUSSIONS
Based on the literature survey, characterization of thin films has been done by using different tools. For example, X-ray diffraction19, field emission scanning electron microscope20, energy dispersive X-ray analysis21, atomic force microscopy, UV-visible spectrophotometer22, photoluminescence spectroscopy23, Raman spectroscopy24 and Fourier transform infrared spectroscopy25. The scanning electron microscope (SEM) was used to study the morphology of samples. The advantages of scanning electron microscopy (SEM) and limitations of transmission electron microscopy (TEM) & scanning probe microscopy (SPM) were highlighted in Table 1. SEM scans a focused electron beam over a surface in order to create an image. The electrons (in the beam) will interact with thin films, producing different signals in order to obtain information about the surface morphology of sample.

<table>
<thead>
<tr>
<th>Advantages of scanning electron microscopy</th>
<th>Disadvantages of transmission electron microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple to use26</td>
<td>Large, expensive30</td>
</tr>
<tr>
<td>Magnifies objects more than 500000X</td>
<td>Laborious sample preparation31</td>
</tr>
<tr>
<td>Can provide accurate measuring and detailed images27</td>
<td>Special maintenance is needed32</td>
</tr>
<tr>
<td>Most samples require minimal preparation action28</td>
<td></td>
</tr>
<tr>
<td>Can give high resolution and depth of focus29</td>
<td></td>
</tr>
</tbody>
</table>

Disadvantages of scanning probe microscopy

| The maximum image size is smaller33 | Slower in acquiring images34 |

The morphologies of the Ni\textsubscript{3}Pb\textsubscript{2}S\textsubscript{2} films prepared for 20 minutes and 40 minutes were indicated in figure 1 and figure 2 (See Appendix), respectively. The SEM analysis revealed that a mixture of particles of various sizes [0.2 µm to 2 µm] in these samples. The films produced for 1 hour showed smooth, dense and uniform with average diameter of 0.5 µm as indicated in figure 3. Figure 4 (See Appendix) showed the films prepared for 80 minutes. The grains became larger, showed irregular shape, diameters were 0.5-2.5 µm.

CONCLUSION
Nanostructured Ni\textsubscript{3}Pb\textsubscript{2}S\textsubscript{2} films have been successfully produced by using chemical bath deposition method in the presence of Na\textsubscript{2}EDTA. Deposition was carried out under various deposition times. The scanning electron microscopy was used to study the morphology of films. Experimental results showed that uniform and compact surface could be observed for the films prepared for 1 hour.

ACKNOWLEDGEMENTS
This research work was supported by INTI INTERNATIONAL UNIVERSITY.
APPENDIX

Figure 1: SEM of Ni$_3$Pb$_2$S$_2$ films prepared for 20 minutes

Figure 2: SEM of Ni$_3$Pb$_2$S$_2$ films prepared for 40 minutes
Figure 3: SEM of Ni$_3$Pb$_2$S$_2$ films prepared for 60 minutes

Figure 4: SEM of Ni$_3$Pb$_2$S$_2$ films prepared for 80 minutes
REFERENCES

