Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
Mrs. M. Josephine Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr. Said I. Shalaby, MD, Ph.D.
 Professor & Vice President
 Tropical Medicine,
 Hepatology & Gastroenterology, NRC,
 Academy of Scientific Research and Technology,
 Cairo, Egypt.
2. Dr. Mussie T. Tessema,
 Associate Professor,
 Department of Business Administration,
 Winona State University, MN,
 United States of America,
3. Dr. Mengsteab Tesfayohannes,
 Associate Professor,
 Department of Management,
 Sigmund Weis School of Business,
 Susquehanna University,
 Selinsgrove, PENN,
 United States of America,
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU),
 UAE.
5. Dr. Anne Maduka,
 Assistant Professor,
 Department of Economics,
 Anambra State University,
 Igbariam Campus,
 Nigeria.
6. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry,
 Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India
7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
 Assistant Professor,
 School of Social Science,
 University of Jammu,
 Jammu, Jammu & Kashmir, India.
8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSSR Research Institute,
 New Delhi- 110070, India.
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural
 Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor (2017): 5.705

EPRA International Journal of
Research & Development
(IJRD)

Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 3, Issue: 8, August 2018
PHYTOCHEMICAL EVALUATION OF BASELLA ALBA L

Revathi, D.1

1PG & Research Department of Botany, Vellalar College for Women (Autonomous), Thindal, Erode (Dt.), Tamil Nadu, India

Sudha, N.

ABSTRACT
Herbal plants play an important role in health system. Man utilized the plants for many purposes such as food, medicine, constructions etc. Plants rich in good source of nutrients are also growing as ornamental plants. Basella alba L. is such a type of plant but in the present study it exhibited the presence of alkaloids, flavonoids, phytosterol, saponins, tannin, cardiac glycosides, fixed oil, glycerine, phlobatannin, terpenoids and steroids as secondary metabolites on various extracts.

KEY WORDS: Health, ornamental, Basella alba, metabolites

INTRODUCTION
The world is fertile with natural and medicinal plants are now more focused than ever because they have the capacity of producing many benefits to society indeed to mankind, especially in the line of medicine and pharmacological (Ibrahim et al., 2014). Following the advent of modern medicine, herbal medicine suffered a setback, but during last two or three decades, advances in phytochemistry and in identification of plant compounds, effective against certain diseases have renewed the interest in herbal medicines (Aboaba et al., 2006). Not only the plants growing in the wild have healing properties but also growing as ornamental the plants may possess medicinal potential too. In the same way Basella alba L. is planted as an ornamental plant, which is glabrous succulent climbing herb commonly known as Malabar Spinach, vine spinach, red vine spinach, climbing spinach, creeping spinach, buffalo spinach or Ceylon spinach, since it is usually used as a substitute for spinach and in Tamil it is called Kodi pasalai. It is a good source of fiber, vitamins A, B, and C, minerals like calcium, magnesium and iron, and several antioxidants. It also contains essential amino acids such as arginine, isoleucine, leucine, lysine, threonine, tryptophan, thiamine, riboflavin and niacin and a low percentage of soluble oxalates. The leaves contain carotenoids, organic acids, water soluble polysaccharides, bioflavonoid, betacyanin and vitamin K. Also, triterpene oligoglycosides basella saponins A, B, C and D, beta vulgaroside I, momordins II b and II c have been isolated from the plant (Deshmukh and Gaikwad, 2014) and also found out that the anticancer, antioxidant and anti-inflammatory properties of Basella alba were attributed to the presence of β-sitosterol and lupeol.

B. alba is traditionally used as medicine for diverse diseases. In Ayurveda, it is used for hemorrhages, skin diseases sexual weakness and ulcers and as laxative in children and pregnant women. The plant is febrifuge, its juice is a safe aperient for pregnant women and a decoction has been used to alleviate labour. It is also an astringent and the cooked roots are used in the treatment of diarrhea. The leaf juice is a demulcent, used in cases of dysentery (Smith and Sotiris Missailis, 2004). Basella mucilage has been used in Thai traditional medicine as topical application for irritant, bruise, ringworm and laboring. Stem and
leaves are used as mild laxative, diuretic and antipyretic and the plant serves as a Thai traditional vegetable. The fruit provides dark violet color for food colorant (Chou, 1997). Basella alba has been used for the treatment of Anemia in women, coughs, cold (leaf with stem), cold related infections (Rahmatullah et al., 2010). Maceration is taken orally for infertility, pelvic inflammatory disease, orchitis, epididymitis, threatened abortion, spurious labour (Fecho et al., 2009). Leaves are used in constipation, poultice for sores, urticaria and gonorrhea. It is also used in poultice local swellings, intestinal complaints etc (Yasmin et al., 2009). The mucilaginous liquid obtained from the leaves and tender stalks of plants is popular remedy for headaches (Jadhav et al., 2011). In India, it has been used for antipruritic and burn (Saikia et al., 2006) and has been used in Bangladesh for acne and freckle treatment (Akhter et al., 2008). The Ayurvedic treatment in India has been used B. alba leaves and stem for anticancer such as melanoma, leukemia and oral cancer (Premalatha and Rajigopal, 2005). Root and leaves has been used for the removal of after birth, stomach pains and increase milk production (Pascaline et al., 2010). Basella alba is administered orally for the treatment of anal prolapsed or hernia. The leaf juice is used in Nepal to treat dysentery, catarrh and applied externally to treat boils. The mucilaginous qualities of the plant make it an excellent thickening agent in soups, stews, etc (Ramu et al., 2011). These healing properties may be due the presence of secondary metabolites of the Basella alba plant. Hence, in the present study, various extracts of B. alba stem, leaves and fruits were used to detect the presence of phytochemicals.

MATERIALS AND METHODS

Collection of the Plant material
The plant Basella alba L. was collected from Salem (Dt.), Tamil Nadu, India. The plant was identified with the help of Flora of the Presidency of Madras (Gamble and Fischer, 1934).

Preparation of Plant Extracts
The stem, leaves and fruits of B. alba were collected, washed with water, separately dried under the shade and powdered. Maceration and infusion methods of extraction were used for extract preparation (Handa et al., 2008). Maceration method was used for preparing the different solvent extracts such as petroleum ether, methanol and ethanol. The infusion method was used for preparing water (aqueous) extract.

Phytochemical Screening Methods
The standard methods were followed to identify various secondary metabolites in petroleum ether, methanol, ethanol and aqueous extracts (Harbone, 1973; Trease and Evans, 1987; Sofowora, 1993 and Kokate et al., 2005)

RESULTS
The phytochemical analysis of B. alba stem revealed the presence of flavonoids, saponins, glycerine, terpenoids and steroids whereas the leaves consists of saponin, tannin, cardiac glycosides, terpenoids and steroids while fruit extract possess alkaloids, flavonoids, phytoster, saponin, cardiac glycosides, fixed oil, glycerine, phlobatannin and terpenoids on various extracts. Table I summarized the results of phytochemical analysis of B. alba stem, leaves and fruits on various extracts.

DISCUSSION
Plants still represent a large untapped source of structurally novel compounds that might serve as lead for the development of novel drugs (Cowan 1999). B. alba are rich in chemical constituents in stem, leaves and fruits. Different extracts were used to study the presence or absence of phytochemicals. The alkaloids are present in fruits (ethanol and aqueous extracts), flavonoids in stem (aqueous extract) and fruits (methanol extract), phytoster in fruits (ethanol extract), saponin in stem (aqueous extract), leaves (aqueous extract) and fruits (methanol and aqueous extracts), tannin in leaves (methanol and ethanol extracts), cardiac glycosides in leaves (petroleum ether and ethanol extracts) and fruits (aqueous extract), fixed oil in fruits (petroleum ether, methanol and ethanol extracts), glycerine in stem (petroleum ether, methanol, ethanol and aqueous extracts), leaves (ethanol and aqueous extracts) and fruits (petroleum ether and ethanol extracts), phlobatannin in fruit (ethanol extract), terpenoids in stem (petroleum ether, methanol, ethanol and aqueous extracts), leaves (petroleum ether, methanol and aqueous extracts), fruits (petroleum ether, methanol and ethanol extracts) and steroids in stem (methanol and ethanol extracts) and leaves (petroleum ether extract). The results of the present study agree with many earlier studies which also found that not all phytochemicals are present in all plant parts and that those present differ according to the type of the extracting solvent used (Tijiani et al., 2009; Ayinde et al., 2007). The present finding confirmed this statement. Similarly Azad et al. (2013) ; Suganthi and Tamilarasi (2015) and Jovale et al. (2015) reported the good source of phytochemicals in B. alba.

The phyto-compounds are great significance in biological activities. Many earlier works reviewed various biological activities of secondary metabolites on human health. The biological properties of alkaloids are anti-hypertensive, anti-malarial, anti-cancer, analgesic (Wink et al., 1998) and antibacterial activities (Mantle et al., 2000). A number of plant alkaloids (Azam et al., 2003) and flavonoids (De Sousa et al., 2004) have been shown to possess antioxidant properties. Flavonoids are reported to possess anti-proliferative, anti-tumor, anti-inflammatory, pro-
apoptotic activities with molecular targets (Williams et al., 2004; Sung et al., 2007 and Buer et al., 2010). Tannins are astringent and are used for intestinal disorders such as diarrhoea and dysentery (Dharmananda, 2003) and possess antioxidants, antimicrobial and anti-carcinogenic agents (Lai et al., 2010). Trease and Evans (2002) reported the cardiac glycosides are used for treatment of various diseases associated with heart. Saponins and glycosides are also very important classes of secondary metabolites as some are cardio-active and used in treatment of heart conditions (Oloyode, 2005). Terpenoids have anti-carcinogenic, anti-malarial, anti-ulcer, antimicrobial and anti-inflammatory activities (Langenheim, 1994 and Dudareva et al., 2004).

CONCLUSION

From the present research it concluded that *B. alba* is not only used for edible purpose, but also it have plenty of phytoconstituents. Further study need for isolation and purification of bioactive compounds.

Table: 1- Phytochemical evaluation of *B. alba* stem, leaves and fruits on various extracts

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Plant parts</th>
<th>Petroleum ether extract</th>
<th>Methanol extract</th>
<th>Ethanol extract</th>
<th>Aqueous extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phytosterols</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saponin</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Tannin</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fixed oil</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycerine</td>
<td>Stem</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Phlobatannin</td>
<td>Stem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Stem</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Steroids</td>
<td>Stem</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

“+” indicates phytochemicals present “-” indicates phytochemicals absent

REFERENCES

