SPEED CONTROL & POWER FACTOR CORRECTION OF BLDC MOTOR DRIVE FED BY ZETA CONVERTER

B Srikanth¹
¹Asst.Professor, Department of EEE, AITAM Engineering College (Autonomous), Tekkali, Andhrapradesh, India

M Bhaskara Rao²
²Asst.Professor, Department of EEE, AITAM Engineering College (Autonomous), Tekkali, Andhrapradesh, India

V V Appalanaidu³
³Asst.Professor, Department of EEE, AITAM Engineering College (Autonomous), Tekkali, Andhrapradesh, India

ABSTRACT
This paper proposes a brushless dc (BLDC) motor fed by zeta converter for power factor correction (PFC). A single phase supply followed by an uncontrolled bridge rectifier and a Zeta DC-DC converter is used to control the voltage of a DC link capacitor. The PFC-based zeta converter is designed to operate in discontinuous inductor current mode thus utilizing a voltage follower approach which requires a single voltage sensor for DC link voltage control and PFC operation. The speed variation in the BLDC motor is achieved by varying the DC link voltage. The DC link voltage is calculated corresponding to the duty cycle of the converter switch. The proposed drive with zeta converter is realized as an efficient method for power factor correction in low-power applications also. A MATLAB/Simulink is used to simulate the developed model to achieve the range of speed control with high power factor and improved Power Quality at the supply.

KEYWORDS: Brushless DC motor (BLDCM), DC link voltage, PID controller, PFC (Power Factor Correction), Zeta converter.

1. INTRODUCTION
Brushless DC motor (BLDCM) is well suited in large number of applications. Due to its higher in efficiency, reliability, and torque and lower in noise level, maintenance requirements, electromagnetic interference (EMI) and of long life time. It is also named as electronically commutated motor. Since it has no brushes and commutator, rather an electronic commutation through VSI is used with switching sequence of VSI’s switches depending up on the rotor position as sensed by Hall Effect position sensors. This motor is a trapezoidal back-EMF motor which has permanent magnets on the rotor and three phase windings on the stator. Brushed DC motor is increasingly being used in military, industrial and commercial applications. To provide a regulated output dc voltage in power systems, a DC/DC converter is being used. There are four main types of converters, usually called the Buck, Boost, Buck-Boost and cuk converter.CUK, SEPIC and Zeta converters are the new classes of DC-DC converters. Among them, Zeta converter is the proposed in this paper. The proposed PFC-based zeta converter feeds a BLDC motor drive. The speed of BLDC motor is being controlled by varying the dc-link voltage of VSI. The PFC zeta converter acts as an inherent PF corrector as it is designed to operate in DICM. A Single voltage sensor is used to realize the complete operation of BLDCM. To reduce the switching losses an electronic commutation of BLDC motor is used. [1]
2. MATHEMATICAL MODEL OF BLDC MOTOR DRIVE SYSTEM

A 3 phase - Y connected trapezoidal back-EMF type BLDC is modeled. Trapezoidal back-EMF is referring that mutual inductance between stator and rotor has trapezoidal shape. Therefore a b c phase variable model is more applicable than d-q axis. With the intention of simplifying equations and overall model the following assumptions are made:

- Magnetic circuit saturation is ignored.
- Stator resistance, self and mutual inductance of all phases are equal and constant.
- Hysteresis and eddy current losses are eliminated.
- All semiconductor switches are ideal.

The electrical and mechanical mathematical equations of BLDC are:

Voltage equations of each phase of BLDC motor

\[V = \sin(\theta) \quad \text{[2.1]} \]

\[V = \sin(\theta - 2\pi/3) \quad \text{[2.2]} \]

\[V = \sin(\theta - 4\pi/3) \quad \text{[2.3]} \]

Back EMF equations of each phase

\[EMF = \sin(\theta) \quad \text{[2.4]} \]

\[EMF = \sin(\theta - 2\pi/3) \quad \text{[2.5]} \]

\[EMF = \sin(\theta - 4\pi/3) \quad \text{[2.6]} \]

Torque equations of each phase

\[T = \cos(\theta) \quad \text{[2.7]} \]

\[T = \cos(\theta - 2\pi/3) \quad \text{[2.8]} \]

\[T = \cos(\theta - 4\pi/3) \quad \text{[2.9]} \]

Electromagnetic Torque equation

\[T = \frac{2}{3} \sin(\theta) \quad \text{[2.1]} \]

Electrical rotor angle

\[\phi = \frac{\theta}{2} \quad \text{[2.1]} \]

Angular rotor speed

\[\omega = \frac{\theta}{2} \quad \text{[2.13]} \]

3. ZETA CONVERTER

Analysis of the zeta converter operating in discontinuous conduction mode is used for power factor correction. The main advantage of zeta converter is that it is a naturally isolated structure, which allows a regulated output voltage with only one power processing stage. With the exception of the zeta converter all others (buck, boost, buck-boost, cuk and sepic) have been employed to correct the power factor of power supplies. However they have their intrinsic limitations.

OPERATION OF ZETA CONVERTER:

The zeta converter is operated in Discontinuous inductor current mode (DICM) to achieve wide range of speed control and power factor correction.
Mode I:
In this mode, switch S_w is ON position. When inductors L_i and L_o are getting charged, the intermediate capacitor C_1 is discharged. The dc link capacitor C_d gets charged. In mode I, diode D is in off condition because positive polarity of the capacitor V_{c1} is applied to diode. When the diode D is said to be in OFF condition a voltage applied to capacitor is V_{c1}.

Mode II:
In mode 2, switch S_w is OFF position. So there is no supply to the remaining part of the circuit. In mode 2, inductor L_i and L_o are discharged. The diode D starts conducting. Hence the voltage across C_1 and V_{dc} gradually increases.

Mode III:
In mode 3, the switch S_w is in OFF position and this mode is said to be in discontinuous mode of operation. The inductor L_i completely discharges and the inductor current becomes zero. When the inductor current becomes zero, the capacitor V_{dc} acts as source for VSI which is connected to BLDC. By this way voltage V_{dc} also decreases in this mode.

4. PROPOSED TOPOLOGY FOR BLDC MOTOR DRIVE SYSTEM
The complete operation of BLDC motor drive is realized using a single voltage sensor. A electronic commutation of BLDC motor is utilized for reducing the switching losses. [2]

Fig 4.1 Proposed PFC zeta converter fed BLDC motor drive

Design of PFC zeta converter:
In switching period, the current flowing through inductor is discontinuous. The duty ratio D for the zeta converter is

$$D = \frac{V_{in}}{2V_{in}} + \frac{\Delta i_{L_o}}{f_s} \quad [4.1]$$

The permitted ripple current in input inductor L_i and output inductor L_o the inductor value L_i and L_o are given as

$$L_i = D \cdot V_{in} / 2 I_{in} f_s \quad [4.2]$$

$$L_o = (1-D)V_{dc} / \{\frac{1}{f_s}(\Delta i_{L_o})\} \quad [4.3]$$
Where \(f_s \) is the switching frequency

The value of intermediate capacitor \(C_1 \) is

\[
C_1 = \text{D}.I_{dc}/\{f_s(\Delta V_{C1})\} \quad [4.4]
\]

Here \(\Delta V_{C1} \) is the permitted ripple in \(C_1 \).

The value of DC link capacitor \(C_d \) is written as

\[
C_d = I_{dc}/(2.\omega.\Delta V_{dc}) \quad [4.5]
\]

Design of dc filter \((L_f \text{ and } C_f)\):

The filter capacitance at maximum is

\[
- \quad \quad \quad \quad \quad [4.6]
\]

The additional value of inductance required is

\[
- \quad \quad \quad \quad \quad [4.7]
\]

Control of proposed BLDC motor drive:

The front-end PFC converter is controlled by approach called voltage follower and the converter generates the PWM pulses for the PFC converter switch for dc-link voltage control. The PFC zeta converter is operated in DICM by single voltage control loop.

Reference dc-link voltage \(\star \),

\[
\star = k_v \star \quad [4.8]
\]

Generated voltage error signal,

\[
() = \star () - () \quad [4.9]
\]

Voltage error signal is generated by comparing reference dc-link voltage(\(\star \)) with sensed dc-link voltage(\(V_{dc} \)).

Generated output voltage(\(V_{cc} \)),

\[
() = (- 1) + \{ () - (- 1)\} + () \quad [4.10]
\]

Controlled output voltage is generated by giving error voltage signal to PI controller

The PWM pulses is generated by comparing the output of voltage controller with a high-frequency saw-tooth signal(\(m_d \))

\[
\begin{cases}
 () < (), \text{ then } s_{w}=\text{on} \\
 () \geq (), \text{ then } s_{w}=\text{off}
\end{cases} \quad [4.11]
\]
5. MATLAB SIMULATION CIRCUIT FOR BLDC MOTOR WITH ZETA CONVERTER

![MATLAB Simulation Circuit for BLDC Motor with Zeta Converter](image)

Figure: 5.1 MATLAB Simulation circuit for BLDC motor with zeta converter

6. RESULT ANALYSIS

Simulation results were obtained using the proposed strategy to the BLDC motor has the following constants and ratings:

Four pole, $V_{\text{rated}} = 200$ V, R_{ph} (phase resistance) = 0.7Ω, L_{ph} (phase inductance) = 2.72mH, K_b (back emf) = 88v/Krpm, K_t (torque constant) = 0.84Nm/A, J (moment of inertia) = 0.8Kg-m²

Controller gains: K_p = 0.3 and K_i = 0.001

Zeta converter parameters: input inductor (L_i) = 1000μH, intermediate capacitor (C_1) = 400 nF, output inductor (L_o) = 3mH, DC link capacitor = 2000μF, DC filter inductance (L_f) = 1.21mH, DC filter capacitance (C_f) = 330nF.

![DC Link Voltage](image)

Fig: 6.1 DC link voltage for input voltage v_s is 220v
Fig: 6.2 Speed of BLDC motor when operating at 220v

Fig: 6.3 Electromagnetic Torque (T_e) of BLDC motor when operating at 220v

Fig: 6.4 Back emf (E_b) of BLDC motor when operating at 220v
Simulated Results for various speeds and DC link voltages

<table>
<thead>
<tr>
<th>DC link voltage (Vdc)</th>
<th>Actual speed of the motor(Nr) in rpm</th>
<th>Power factor(cosφ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>131.5</td>
<td>1486</td>
<td>0.958</td>
</tr>
<tr>
<td>122.8</td>
<td>1388</td>
<td>0.969</td>
</tr>
<tr>
<td>114</td>
<td>1289</td>
<td>0.962</td>
</tr>
<tr>
<td>105.3</td>
<td>1189</td>
<td>0.944</td>
</tr>
<tr>
<td>96.3</td>
<td>1090</td>
<td>0.921</td>
</tr>
<tr>
<td>87.7</td>
<td>991</td>
<td>0.900</td>
</tr>
</tbody>
</table>

CONCLUSION

A Simple control using a voltage follower approach has been used for voltage control and power factor correction of a PFC zeta converter fed BLDC motor drive. The speed of BLDC motor has been controlled by varying the dc-link voltage of VSI via the PFC zeta converter. The PFC zeta converter has been designed to operate in DICM, which required a voltage follower for dc-link voltage control. The PFC zeta converter fed BLDC motor drive has been simulated and results were obtained. The zeta converter is found to be effective in improving the power factor of the BLDC motor drive. The proposed drive system has been found suitable to various adjustable speed drives for many low power applications.

REFERENCES

8. Reshma Shabi, Dhanya B Nair, “Power factor corrected zeta converter Based switched mode power supply, IJHREEICE, 2016 vol(4) issue 9, pp 68-72