Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.
Editor
Mrs. M. Josephine Immaculate Ruba

Editorial Advisors
1. Dr. Yi-Lin Yu, Ph.D.
 Associate Professor,
 Department of Advertising & Public Relations,
 Fu Jen Catholic University,
 Taipei, Taiwan.
2. Dr. G. Badri Narayanan, PhD,
 Research Economist,
 Center for Global Trade Analysis,
 Purdue University,
 West Lafayette,
 Indiana, USA.
3. Dr. Gajendra Naidu, J., M.Com, I.L.M., M.B.A., PhD. MHRM
 Professor & Head,
 Faculty of Finance, Botho University,
 Gaborone Campus, Botho Education Park,
 Kgabe, Gaborone, Botswana.
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU), UAE.
5. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSR Research Institute,
 New Delhi- 110070, India.
6. Dr. Sumita Bharat Goyal
 Assistant Professor,
 Department of Commerce,
 Central University of Rajasthan,
 Bandar Sindri, Dist-Ajmer,
 Rajasthan, India
7. Dr. C. Muniyandi, M.Sc., M. Phil., Ph. D,
 Assistant Professor,
 Department of Econometrics,
 School of Economics,
 Madurai Kamaraj University,
 Madurai-625021, Tamil Nadu, India.
8. Dr. B. Ravi Kumar,
 Assistant Professor
 Department of GBEH,
 Sree Vidyanikethan Engineering College,
 A. Rangampet, Tirupati,
 Andhra Pradesh, India
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry, Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India

EPRA International Journal of Multidisciplinary Research
Volume: 2 Issue: 3 March 2016

Published By:
EPRA Journals

CC License
CC BY NC ND
ECONOMIC IMPACT OF DEFENSE EXPENDITURE ON THE GROWTH PROSPECTS OF INDIA

Dr. G. Ganesan
1 Professor and Head, School of Commerce, Bharathiar University, Coimbatore, Tamil Nadu, India
Anitha. K. M
2 Research Scholar, School of Commerce, Bharathiar University, Coimbatore, Tamil Nadu, India

ABSTRACT

Budget allocation for defense expenditure has been given significant importance in terms to measure the real growth of the countries in the globe. India is concerned more about budget allocation for defense and every plan period which would impact both ways. Earlier studies on Defense expenditure of various countries as well as studies in India have viewed differently in terms of impacts on growth of economy. Hence it is needed to investigate the budget allocation for defense in India and to see that whether it or not would affect growth of the economy. In order to probe the data relating to defense expenditure of India over a period of nearly 27 years and see the impact and implication of the growth the study gets significant. To investigate the impact of Defense expenditure the cointegration test has been adopted to find the long run and short run relationship between defense expenditure, external debt and GDP. The CUSUM test determines the Recursive Residuals of the model and results that there is both long run and short run relationship among the variables.

KEYWORDS: Defense Expenditure, External Debt, Gross Domestic Product, Cointegration, Vector Error correction Model.

INTRODUCTION

India after independence opted for a path of economic development based on centralized planning with a leading role assigned to the defense expenditure on the consideration that it shall be used for planned investment to achieve rapid economic growth. Developing countries like India allocates a significant portion of its resources for national security purposes and it is an important component in the government budget allocation of national security. Defense expenditure is one of the commonly used indicators to calculate the defense burden on the economy of a country and a change in a country’s defense expenditure reflects the country’s socio-economic conditions. The relationship between defense expenditure and economic growth has frequently been explored empirically in the defense economics literature since the influential expenditure is beneficial or determined to a country’s economy. Following this a vast majority of research has targeted defense expenditure and economic growth in recent past. The results are empirical research of Benoit (1973, 1978), this suggested that defense budget had a positive impact on economic growth. There is an ongoing debate on whether increase in defense diverse and inconclusive and the diversity of result is due to the country specific factors, nature of data, different alternatives used represent defense budget and different methodologies employed in the analysis. Defense expenditure can affect economic growth either positively or negatively. Theoretically there is no clear-cut prediction of the direction of...
causation between defense expenditure and economic growth.

LITERATURE REVIEW

There exists much literature that analyses the relationship between defense expenditure, economic growth and external debt between different social groups and across generations within a society. In the literature, there is much controversy over whether defense expenditure is associated with higher or lower growth rates (Chang et al., 2001). First group argue that the effect of defense expenditure on economic growth is positive (Benoit, 1973). Second group argue that the effect of defense expenditure on economic growth is negative (Deger, 1986, Grobar and Porter, 1989). Third group tends to give context-specific explanations that vary from positive and negative effects (Frederiksen and Looney, 1982, Derouen, 1995). But there is no consensus among researchers about the existence of casual ordering between the variables or, when it exists, its nature and direction. In the Indian context there is bi-directional causality between GDP and defense expenditure (Tiwari 2010, Yildirim, 2006).

Considering external debt and defense expenditure as major variables Selami Sezgin (2004) showed a negative relationship between external debt and defense expenditure in the long run and in the short run external debt is positive related to arms imports, implying Turkish arms imports have contributed Turkey’s indebtedness. Alexander and Hellen (2014) in the study implied that any innovation in military policy that does not create spin-off effect will trigger external burden stock in Nigeria and the response external debt due to random shock military spending was positive from the first period upto the fifth period thereafter became negative all through.

The relationship between defense expenditure with economic growth is well discussed in the international research studies but the relationship between defense expenditure and economic in Indian context is not very much focused. Aviral Kumar and Tiwari (2010) have studied the defense expenditure and economic growth for India by using Deger model and found an bi-directional causality between economic growth and defense expenditure, by using gross domestic savings, merchandise trade and domestic savings as the variables. Thus this research aims to fill gap by carrying out a study on the contribution of defense expenditure to external debt in India.

DATA DESCRIPTION

The data of Defense expenditures are taken from the Stockholm International Peace Research Institute (SIPRI) and the data of Gross Domestic Product and External debt were taken from Reserve Bank of India (RBI) annual report for the period of 1988-2015. Furthermore, all of the series variables transformed into log form tabulation in annexure 1. Log transformation can reduce the problem of heteroscedasticity because it compresses the scale in which the variables are measured, thereby log transformation has been taken for all the variables and named as Real Defense Expenditure, Real External Debt, Real Gross Domestic Product. In this research, a recent technique, the Johansen’s co-integration test has been adopted to examine whether the variables under consideration share a common stochastic trend or not to explore the nature of long-run interrelationship among them. The basis of the Johansen Cointegration test Vector autoregressive (VAR) model is adopted with an order k with a (n*1) vector of the endogenous variable in a error correction form. The optimal lag length of the VAR model is based on information criteria such as the Akaike Information Criterion (AIC), Schwarz’s Bayesian information criterion (SBIC) and the Hannan-Quinn information criterion (HQIC). The CUSUM test is based on the cumulative sum of the recursive residuals which plots the cumulative sum together with 5% critical lines. The test finds parameter instability if the cumulative sum goes outside the area between the two critical lines.

METHODOLOGICAL FRAMEWORK

The possible interdependence between the Defense expenditure and Gross Domestic Product is modeled along with additional control variable External Debt proposed in the literature Selami (2004) Greg et.al (2013) Rabia and Kamarn (2012) in a joint framework. The study applies Augmented Dickey Fuller test to test whether variables are stationary or needed to be differenced. If the variables under the study are non-stationary it may lead to unauthentic results and it is important to make the variable stationary. For the intention of investigating the long-run relationship among the variables, the variables must be co-integrated. In the multivariate case, if the I(1) variables are linked by more than one co-integrating vector, the Engle-Granger (1987) procedure is not applicable. Therefore, Johansen method(1995) is used in this study to identify the number of co-integrated vectors in the model. Johansen (1995) cointegration technique is used to examine whether the variables under consideration share a common trend and integration. The Johansen and Juselius method has been developed to imply maximum likelihood method to estimate and determine the existence of co-integrating vectors and it also
suggestions two test statistics namely trace and
eigenvalue to fund out the number of co-integrating
vectors. If there is any difference between the results
of trace test and maximum eigenvalue test, then the
results of maximum eigenvalue test is preferred
because it is more authentic in case of small samples.
The effect of defense expenditures and external debt
on economic growth can be expressed as follows:

$$\text{RGDP} = f(\text{RDE}, \text{RED})$$ (i)

where: GDP is the real Gross Domestic Product,
DE is the Defense expenditure and ED is the
external debt.

RESULTS AND DISCUSSION
The preliminary step in this analysis is to
establish the degree of integration of each variable.

Table 1 Augmented Dickey Fuller Unit Root test estimation

<table>
<thead>
<tr>
<th>Variable</th>
<th>95% ADF Test</th>
<th>Critical Value</th>
<th>p-value</th>
<th>95% ADF Test</th>
<th>Critical Value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDE</td>
<td>-5.128852*</td>
<td>-3.711457</td>
<td>0.0003 I(1)</td>
<td>-5.021399*</td>
<td>-4.356068</td>
<td>0.0022 I(1)</td>
</tr>
<tr>
<td>RED</td>
<td>-4.415019*</td>
<td>-3.711457</td>
<td>0.0019 I(1)</td>
<td>-4.426187</td>
<td>-4.356068</td>
<td>0.0086 I(1)</td>
</tr>
<tr>
<td>RGDP</td>
<td>-10.33063*</td>
<td>-3.711457</td>
<td>0.0000 I(1)</td>
<td>-10.33879</td>
<td>-4.356068</td>
<td>0.0000 I(1)</td>
</tr>
</tbody>
</table>

Note: Mackinnon et al (1999) one-sided p-values. * and ** show significance at the 1% and 5% levels of significance, while lag order is given in parentheses.

The result of ADF test is stationary and the
next procedure is finding the appropriate lag length is
to have Gaussian error terms. The most common procedure in choosing the optimal lag length is to estimate a VAR model including all three
variables in first difference I(1). Table 2 clearly
articulates the existence of long run relationship
between the variables as the maximum number of
lags was set equal to 1 lag and the AIC value is
greater than SC value.

Table 2: VAR Lag order selection criteria

<table>
<thead>
<tr>
<th>Lag</th>
<th>LogL</th>
<th>LR</th>
<th>FPE</th>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.08851</td>
<td>NA</td>
<td>1.77e-05</td>
<td>-2.430369</td>
<td>-2.281248</td>
<td>-2.405132</td>
</tr>
<tr>
<td>1</td>
<td>94.84849</td>
<td>108.5684*</td>
<td>3.34e-08*</td>
<td>8.720894*</td>
<td>8.124406*</td>
<td>8.619944*</td>
</tr>
<tr>
<td>2</td>
<td>97.25649</td>
<td>3.01684</td>
<td>7.31e-08</td>
<td>-8.026999</td>
<td>-6.983145</td>
<td>-7.850337</td>
</tr>
<tr>
<td>3</td>
<td>107.0881</td>
<td>3.914123</td>
<td>8.54e-08</td>
<td>-8.114533</td>
<td>-6.623131</td>
<td>-7.862159</td>
</tr>
<tr>
<td>4</td>
<td>118.6274</td>
<td>7.288027</td>
<td>1.15e-07</td>
<td>-8.381836</td>
<td>-6.443250</td>
<td>-8.053750</td>
</tr>
</tbody>
</table>

Note: * indicates lag order selected by the criterion. LR: sequence modified LR test statistic (each test at 5% level) FPE: final prediction error
AIC: Akaike Information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion.

The relationship between Real Defense
Expenditure, Real External Debt and Real GDP is
observed using the multivariate cointegration
methodology proposed by Johansen (1988) and
Johansen & Juselius (1990). The Johansen’s
Cointegration Test designates at least one
cointegrating vector and thus, long run relationship is
maintained by the data generating method. The
analysis in Table 3 posits that Trace test indicates 2
cointegrating egns at the 0.05 level, Max-
The eigenvalue test indicates no cointegration at the 0.05 level.

Table 3: Johansen Cointegration Test

<table>
<thead>
<tr>
<th>H0</th>
<th>Eigen Value</th>
<th>Trace Statistics</th>
<th>0.05 Critical Values</th>
<th>Maximum Eigenvalue Statistics</th>
<th>5% Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.622700</td>
<td>39.59327*</td>
<td>29.79707</td>
<td>19.49427</td>
<td>21.13162</td>
</tr>
<tr>
<td>r= 1</td>
<td>0.569998</td>
<td>20.09900*</td>
<td>15.49471</td>
<td>16.87933*</td>
<td>14.26460</td>
</tr>
<tr>
<td>r= 2</td>
<td>0.148694</td>
<td>3.219674</td>
<td>3.841466</td>
<td>3.219674</td>
<td>3.841466</td>
</tr>
</tbody>
</table>

* denotes rejection of the hypothesis at the 0.05 level.

The Vector Error Correction Model is used to evaluate the short-run dynamics of the variables and the results determined that there is a unidirectional relationship between real defense expenditure, real external debt, and real gross domestic product. Testing for the stability of the long-run coefficients obtained is carried out by using the cumulative sum of recursive residuals (CUSUM) and cumulative sum of squares of recursive residuals (CUSUMQ) tests. These tests utilize the CUSUM and CUSUMQ, correspondingly, which are rationalized recursively and are plotted adjacent to the break points in the broken sample points to test the null hypothesis that all the coefficients in the selected VECM are stable. Implementation of the CUSUM and CUSUMQ tests in the form of the VECM for the real output is carried out by the Microfit 4 routine suggested in Peseran and Peseran (1997). The graphical representations of the tests are presented in figure a and b. According to figures, neither CUSUM nor CUSUMQ plots cross the 5% critical bounds, indicating no evidence of any structural instability in the real defense expenditure and its determinants.

a) Plot of Cumulative Sum of Recursive Residuals

![CUSUM Plot](image-url)
b) Plot of Cumulative Sum of Squares of Recursive Residuals

CONCLUSION

Defense expenditure is an important component of national security and every country allocates a significant portion of its resources for this purpose. India’s defense spending has increased substantially over the decades by an average of 10 percent per year. This study examined the influence of defense expenditure on economic growth with respect to external debt. From the study it is clearly noted that there is a negative relationship between defense expenditure and economic growth in the long run Faek (2015) and in short run, external debt is positively related to economic growth implying that India’s defense expenditure cointegrating strongly with economic growth. As s result of this, the robust growth of the GDP and the consequent rise of defense expenditure have significantly enhanced the country’s spending ability, the decreasing share of Defense in these resources indicates that the burden of Defense has reduced significantly. The implication of the study suggests that Indian government should reduce the defense expenditures to reduce the external debt.

REFERENCES

<table>
<thead>
<tr>
<th>Year</th>
<th>LDEFENSEEXP</th>
<th>LEXTERNALDEBT</th>
<th>LGDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>4.893427093190714</td>
<td>8.074381293263627</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>4.970923793860027</td>
<td>8.078328474603456</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>5.038639490505853</td>
<td>8.12021992534074</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>5.096629487263117</td>
<td>8.096838785814088</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>5.16946074423032</td>
<td>8.165033751512515</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>5.386557155397445</td>
<td>8.196337578086665</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5.448675148136593</td>
<td>8.242648445156579</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5.593074352671779</td>
<td>8.2328203042329</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>5.687144833503177</td>
<td>8.331771634583484</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>5.865846433183331</td>
<td>8.301596093857429</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>5.9888622638093181</td>
<td>8.370360006632378</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>6.154242193135749</td>
<td>8.394150598505886</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>6.207019376773516</td>
<td>8.38806807687453</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>6.296482972806629</td>
<td>8.45065801161509</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>6.321882780893235</td>
<td>8.365793391114704</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6.39802905659448</td>
<td>8.468683387942071</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>6.631421899153808</td>
<td>8.4693399376297</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>6.69145078789068</td>
<td>8.523167310775883</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>6.75121842116191</td>
<td>8.563590017645445</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>6.820900253405351</td>
<td>8.625071335187087</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>7.04073770988275</td>
<td>8.622349286181538</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>7.256868706577028</td>
<td>8.6264331722086</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>7.340297147210876</td>
<td>8.710863440833645</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>7.44373974898528</td>
<td>8.74916168099606</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7.505360252821594</td>
<td>8.766182251456206</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>7.618246183859707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>7.706927754185386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>7.810867555210365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>