Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
Mrs. M. Josephin Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr. Said I. Shalaby, MD, Ph.D.
 Professor & Vice President
 Tropical Medicine,
 Hepatology & Gastroenterology, NRC,
 Academy of Scientific Research and Technology,
 Cairo, Egypt.
2. Dr. Mussie T. Tessema,
 Associate Professor,
 Department of Business Administration,
 Winona State University, MN,
 United States of America,
3. Dr. Mengisteb Tesfayohannes,
 Associate Professor,
 Department of Management,
 Sigmund Weis School of Business,
 Susquehanna University,
 Selinsgrove, PENN,
 United States of America,
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU),
 UAE.
5. Dr. Anne Maduka,
 Assistant Professor,
 Department of Economics,
 Anambra State University,
 Igbariam Campus,
 Nigeria.
6. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry,
 Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India
7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
 Assistant Professor,
 School of Social Science,
 University of Jammu,
 Jammu, Jammu & Kashmir, India.
8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSSR Research Institute,
 New Delhi-110070, India.
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural
 Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

EPRA International Journal of
Research & Development
(IJRD)

Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 3, Issue:12, December 2018

Published By
EPRA Journals

ISSN (Online): 2455-7838
SJIF Impact Factor : 6.093

CC License
A NATURAL INDICATOR FROM RHIZOMES OF CURCUMA LONGA (TURMERIC)

Patil N. B. 1
1. Lecturer, Department of Pharmacy, Ahinsa Institute of Pharmacy, Dondaicha (Maharashtra)

Patil A.A. 2
2. Asst.Professor, Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha (Maharashtra)

Patil K.B. 3
3. Asst.Professor, Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha (Maharashtra)

Wagh M.N. 4
4. Lecturer, Department of Pharmacy, Ahinsa Institute of Pharmacy, Dondaicha (Maharashtra)

ABSTRACT
The present study was designed to evaluate the extracted solution from Rhizomes of curcuma longa (Turmeric) as a titration Indicator. A comparative study of curcuma longa a natural indicator with synthetic indicator i.e. Phenolphthalein, methyl orange were carried out to determine the accuracy of curcuma longa as an Acid-Base indicator. The results indicated curcuma longa can be used as acid base titration, because similar results were obtained by phenolphthalein and methyl orange. The used of curcuma longa is easy availability, inertness, easy of preparation and cost effectiveness as compared to synthetic indicator. Curcuma longa extracted solution can be used to differentiate solution and it showed different colors each pH range from.

KEYWORDS- Curcumalonga, Indicator, Phenolphthalein, Methyl orange.

INTRODUCTION
Indicators are substances that have a different color in acid, alkaline and neutral. As a result the solution can be used to distinguish acid, alkaline, and neutral.[Sarita Kadam, Adhikrao Yadav, Vijay Raje, Karishma Waghmare, 2013]. Indicators can be classified into two main classes according to their source.
1. Synthetic indicators- it includes all the synthetically prepared acid base indicators.
2. Natural indicators- It includes natural flowers, fruits and other plant parts as acid-base indicator. [Pokharna Gaurav, Jain Naveen Kumar, Nalwaya Narendra, Chatap V.K., 2010].

Commercial indicators are expensive and some of have toxic effects on users and can also can be environmental pollution for these reasons there has been an increasing interest in searching for alternatives sources of indicators from Natural indicators. These alternatives would be cheaper, more available, simple to extract, less toxic to users and environmentally friendly.[Daniel A. Abugri, Ohene
B.Apea,Gregory Pritchett,2012] Curcuma longa (Turmeric)and several other spices of the curcuma genus grow wild in the Indian Ayurveda system of herbal medicine ,turmeric known as strengthening and warming to the whole body.[DebijitBhowmik,Chiranjib,K.P.SampathKumar,Mar gretChandira,B.Jayakar,2009] the main constituent of turmeric is curcumin. Curcumin a polyphenol that gives turmeric its color. The other constituent present are volatile oils including turmerone, atlantone and zingiberone, sugars, proteins and resins.[Harshal Pawar, Mugdha karde, Nilesh Mundle,, Pravin Jadhav, kavita Mehra,2014] Curcumin is pH indicator in acidic solution (pH < 7.4) it turns yellow, whereas in basic (pH >8.6) solution it turns bright red. [Nitesh Kumar, Sunil Kumar Sakhya, 2012].

Due to presence of curcumin as an active constituent and the volatile oils turmeric is widely used as a medicine for the treatment of many ailments.it is vastly used as an anti-inflammatory agent. [Harshal Pawar, Mugdha karde, Nilesh Mundle,, Pravin Jadhav, kavita Mehra,2014] the rhizomes extract had been studied for its anticancer activity.[Singh G., Sharma S., Choudhary N., Yadav S.,2012] it is natural antiseptic and antibacterial agent,useful in distinfecting cuts and burns, natural liver detoxifier, prevent and slow the progression of Alzheimer disease by removing amyloid plague buildup in the brain .[DebijitBhowmik,Chiranjib,K.P.SampathKumar,Mar gretChandira,B.Jayakar,2009] it is antioxidant ,antiviral, immunosuppressive activity in-vitro and in animals.

<table>
<thead>
<tr>
<th>Sr.no.</th>
<th>Heading</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Synonyms</td>
<td>Halad,curcuma</td>
</tr>
<tr>
<td>2.</td>
<td>Biological source</td>
<td>Curcuma longa</td>
</tr>
<tr>
<td>3.</td>
<td>Parts used</td>
<td>Rhizomes</td>
</tr>
<tr>
<td>4.</td>
<td>Family</td>
<td>Zingiberaceae</td>
</tr>
<tr>
<td>5.</td>
<td>Color</td>
<td>Yellowish orange</td>
</tr>
<tr>
<td>6.</td>
<td>Odour</td>
<td>Characteristics</td>
</tr>
<tr>
<td>7.</td>
<td>Taste</td>
<td>Slightly bitter</td>
</tr>
<tr>
<td>8.</td>
<td>Size</td>
<td>2-5 cm in length, 1-2 cm in thickness</td>
</tr>
<tr>
<td>9.</td>
<td>Shape</td>
<td>Round, ovate or oblong, cylindrical and short Branched.</td>
</tr>
<tr>
<td>10.</td>
<td>Extra features</td>
<td>Rootsscars and imparts yellow color to fingers during handling and shows presence of fibers.</td>
</tr>
</tbody>
</table>

Table no.1 Phramacongnostical details Turmeric. [S.B.Gokhale, Dr. C.K.Kokate,2005].

Fig.no.1 Turmeric plant

MATERIALS AND METHODS

1. Collection of Rhizomes –
The rhizomes of curcuma longa (Turmeric) were collected from local area of Tarhadi (Maharashtra) and then rhizomes were washed with water to remove the dust.

2. Apparatus and chemicals-
Burette, mortar pestle, Ammonia, Acetic acid, hydrochloric acid, sodium hydroxide, methyl orange, and phenolphthalein of analytical grad were used.

3. Preparation of Reagents-

0.1 M each of Ammonium hydroxide, acetic acid, hydrochloric acid, sodium hydroxide and methyl orange, and phenolphthalein solution were prepared as per Indian Pharmacopoeia (IP 1996).[Indian Pharmacopoeia-1996].

4. Preparation of Turmeric extract-

5 gm. of rhizomes of curcuma longa were cut into small pieces and triturated in mortarpestle by adding 10 ml of water and cool it then filter the extract solution and used as indicator.
5. Experimental procedure-

The extract solution of curcuma longa was filled in a petridish and then properly sized strips of what man filter paper were dipped in it for 6-7 hours and finally dried at 25-35°C. Then these papers were dipped in acid solution (0.1 M HCl) and in basic solution (0.1 M NaOH) and color changed were observed. Paper showed in yellow color in acidic solution and brownish red color in basic solution.

The calibration of apparatus like burette, pipettes and other required instruments and standardization of acid and bases were done as per procedures given in Indian pharmacopoeia 1996.

10 ml of titrant with 2 drops of indicator curcuma longa was titrated against titrants and the color changes for the indicator is listed table no.2. The results of screening for strong acid-strong base (HCl-NaOH), strong acid-weak base (HCl-NH₄OH), weak acid-weak base (CH₃COOH-NH₄OH), weak acid–strong base (CH₃COOH-NaOH) are listed in table no. 3 and 4. Each titration is carried out ten times by using 0.1 M strength of acid and alkali then results were recorded as per method.
RESULTS AND DISCUSSION

By using strong acid, strong base, weak acid, weak base in different combinations and along with synthetic and natural indicator result can be concluded in terms of difference in volume consumed of a particular acid or base in given set of combination.

In case of strong acid and strong base, volume consumed with phenolphthalein and curcuma longa are almost similar, differing only 0.5 ml and pH at end point point was same both cases 7-8 since difference in volume is not significant and pH at the end point is also same, so we can say that Curcuma longa can be used in place of phenolphthalein.

In case of weak acid and strong base, volume consumed with phenolphthalein and curcuma longa are almost similar, differing only by 0.3 ml but pH at end point was differ in 0.3 almost same. So we can say that Curcuma longa can be used in place of phenolphthalein.

In case of strong acid and weak base, volume consumed with phenolphthalein and curcuma longa are almost similar, differing only 1.7 ml and pH at end point point was same both cases 7-7.1 since difference in volume is not significant and pH at the end point is also same, so we can say that Curcuma longa can be used in place of Methyl orange.

In case of weak acid and weak base, volume consumed with phenolphthalein and curcuma longa are almost similar, differing only 1.8 ml but pH at end point was same both cases 7-7.3 since difference in volume is not significant and pH at the end point is also same, so we can say that Curcuma longa can be used in place of Methyl orange.

Table no. 2 Curcuma longa (Turmeric)

<table>
<thead>
<tr>
<th>Titrant</th>
<th>Indicator</th>
<th>Color (at initial point)</th>
<th>Titrate</th>
<th>Color (at end point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>Curcuma longa</td>
<td>yellow</td>
<td>NaOH</td>
<td>Brownish red</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>Curcuma longa</td>
<td>yellow</td>
<td>NaOH</td>
<td>Brownish red</td>
</tr>
<tr>
<td>HCl</td>
<td>Curcuma longa</td>
<td>yellow</td>
<td>NH₄OH</td>
<td>Brownish red</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>Curcuma longa</td>
<td>yellow</td>
<td>NH₄OH</td>
<td>Brownish red</td>
</tr>
</tbody>
</table>

Table no.3 volume of titrate with standard indicator.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Titrant (0.1M)</th>
<th>Titrate (0.1M)</th>
<th>Standard Indicator</th>
<th>Curcuma longa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>NaOH</td>
<td>7.5 ± 0.02 (Ph.Ind.)</td>
<td>8.0 ±0.2</td>
<td></td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>NaOH</td>
<td>9.7 ± 0.02 (Ph.Ind.)</td>
<td>10.2 ±0.02</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>NH₄OH</td>
<td>19.3 ±0.48 (M.O.Ind.)</td>
<td>21 ±0.03</td>
<td></td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>NH₄OH</td>
<td>19.6 ±0.3 (M.O.Ind.)</td>
<td>21.4 ± 0.04</td>
<td></td>
</tr>
</tbody>
</table>

Ph.Ind. - Phenolphthalein indicator; M.O.Ind. - Methyl orange indicator
Table no.4 pH of the solution at End point of titration.

<table>
<thead>
<tr>
<th>Solution</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl and NaOH with ph.Ind.</td>
<td>7.4</td>
</tr>
<tr>
<td>HCl and NaOH with C.L.Ind.</td>
<td>7.9</td>
</tr>
<tr>
<td>CH₃COOH and NaOH ph.Ind.</td>
<td>8.2</td>
</tr>
<tr>
<td>CH₃COOH and NaOH C.L.Ind</td>
<td>8.5</td>
</tr>
<tr>
<td>HCl and NH₄OH with M.O.Ind.</td>
<td>7.0</td>
</tr>
<tr>
<td>HCl and NH₄OH with C.L.Ind.</td>
<td>7.1</td>
</tr>
<tr>
<td>CH₃COOH and NH₄OH with M.O.Ind</td>
<td>7.024</td>
</tr>
<tr>
<td>CH₃COOH and NH₄OH with C.L.Ind</td>
<td>7.32</td>
</tr>
</tbody>
</table>

Ph. Ind. - Phenolphthalein indicator; M.O.Ind. - Methyl orange indicator; C.L. Ind. - Curcuma longa indicator

Fig no.5 Acid–Base titration with Synthetic indicator

Fig no.6 Acid–Base titration with Curcuma longa extract
CONCLUSION

Natural indicators are the results of ever increasing demand of mankind towards better alternatives, which not only reduces cost but also healthful to the user and on the all results obtained by natural indicator is similar to that of available synthetic indicator.

Extract obtained from rhizomes of curcuma longa can be used as acid base indicator in titration of strong acid with strong base with similar results as obtained by phenolphthalein. The rationale behind using curcuma extract in preference to phenolphthalein is easy availability, inertness, low cost, and ease of preparation.

Conflict of Interest- None.

Acknowledgement - Authors are thankful to Dr. J. A. Sawale, Principal of Ahinsa Institute of Pharmacy, Dondaicha (Maharashtra) providing necessary facility.

REFERENCE