EPRA International Journal of Multidisciplinary Research

Monthly Peer Reviewed & Indexed International Online Journal

Volume: 5 Issue: 5 May 2019

Published By: EPRA Publishing

CC License

Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.
Editor
Mrs. M. Josephin Immaculate Ruba

Editorial Advisors

1. Dr. Yi-Lin Yu, Ph.D.
 Associate Professor,
 Department of Advertising & Public Relations,
 Fu Jen Catholic University,
 Taipei, Taiwan.
2. Dr. G. Badri Narayanan, PhD,
 Research Economist,
 Center for Global Trade Analysis,
 Purdue University,
 West Lafayette,
 Indiana, USA.
3. Dr. Gajendra Naidu, J., M.Com., LL.M., M.B.A., Ph.D. MHRM
 Professor & Head,
 Faculty of Finance, Botho University,
 Gaborone Campus, Botho Education Park,
 Gaborone, Botswana.
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU), UAE.
5. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSRR Research Institute,
 New Delhi- 110070, India.
6. Dr. Sumita Bharat Goyal
 Assistant Professor,
 Department of Commerce,
 Central University of Rajasthan,
 Bandar Sindri, Dist-Ajmer,
 Rajasthan, India
7. Dr. C. Munivandy, M.Sc., M. Phil., Ph.D,
 Assistant Professor,
 Department of Econometrics,
 School of Economics,
 Madurai Kamaraj University,
 Madurai-625021, Tamil Nadu, India.
8. Dr. B. Ravi Kumar,
 Assistant Professor
 Department of GBEH,
 Sree Vidyanikethan Engineering College,
 A Rangampet, Tirupati,
 Andhra Pradesh, India
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry, Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India
CHARACTERIZATION OF ESSENTIAL OIL EXTRACTED FROM MEDICINAL PLANTS: A REVIEW

Navneet Kaur
Department of Biotechnology,
Uttaranchal College of Applied and Life sciences
Uttaranchal University, Dehradun

Nistha Kapoor
Department of Biotechnology,
Uttaranchal College of Applied and Life sciences
Uttaranchal University, Dehradun

Esha Bhatti
Department of Biotechnology,
Uttaranchal College of Applied and Life sciences
Uttaranchal University, Dehradun

ABSTRACT
Medicinal plants have been utilized for various medicinal purposes since ages. Medicinal plants and their product comprise an indispensable part of traditional as well as modern system of medicine. Leaves, root, flowers, seeds have been reported to possess several medicinal properties along with this oil obtained from different parts of plant also possesses inherent biological and pharmacological properties. Ever since medicinal potential of oil extracted from plants have been recognized substantial research has been conducted to optimize procedure and protocol for isolation and characterization of plant oil. Simultaneously, studies have been conducted to evaluate different biological properties including antibacterial, antiinflammatory, antidiabetic, etc possesses by plant oil. There is requirement to scale up production of medicinal oil so as to achieve their practical application in healthcare sector, the primary requirement of which is practicing large scale commercial cultivation of medicinal plants so as to obtain sufficient amount of raw material and their respective product (oil) and achieve their medicinal application.

KEYWORDS: Medicinal plants, essential oil, biological activity, GC-MS

INTRODUCTION
Medicinal Plants have been utilized in treatment of diseases since ages. The inherent medicinal properties of these plants is attributed to production of compounds which possess biological or pharmacological properties. One or the other part of medicinal plant synthesizes biologically active compounds belonging to different chemical classes such as alkaloids, Steroids, flavonoids etc. In different medicinal plants such compounds are synthesized in different parts including leaves, roots, rhizomes, bark, fruits, seeds, etc. (Bozin et al 2016). By far roots and leaves constitute the most important medicinal component of several plants such as Withania somnifera (commonly known as Ashwagandha), plants Picorhizae kurroa (Sood et al 2009) and Valeriana wallichii (Bahuguna et al 2019, Sharma et al 2019). Roots, leaves and seeds remain most common source of extraction of oil from medicinal plants for various purposes (Sharma et al 2015). Characterization of oil
extracted from plants has been a prime focus in recent past due to widespread application of oil including medicinal, pharmacological properties. Utilization in food processing, cosmetic industries etc (Yentema et al 2007). Essential oil contains several phytochemicals with biological activity (Bishob and Thornton 1997). Along with biochemical and medicinal characterization studies conducted have focused on analysis of physical properties of oil extracted from plants. Major physiochemical properties analysed include refractive index, Saponification value, acid value, density, solubility optical activity etc aid in assessment the nature and quality of oil (Yentema et al 2007, Hagos et al 2017).

EXTRACTION AND CHARACTERIZATION OF OIL FROM MEDICINAL PLANTS

With advancements in healthcare system and development of bio analytical techniques biologically active compounds have been identified, isolated, characterized from several medicinal plants. Several bio analytical techniques such as Chromatography (for purification of compounds), GC-MS, FTIR, LCMS, NMR (for prediction of chemical structure of the compound) have been utilized. Several bio analytical techniques such as Chromatography (for purification of compounds) have been utilized. (Sasidharam et al 2010). Beside isolation and characterization studies have also conducted to evaluate toxicity level of administration of purified phytochemicals.

The process of characterization of phytochemicals begins with extraction from plant source. Generally plant parts (leaves, root, seeds) are shade dried, powdered, dissolved in solvent and extracted through soxhlet. Most commonly utilized solvent involve methanol, ethanol, mixture of alcohol and water and ether. However other solvents have also been utilized as choice of solvent varies from plant species to species. Cosa et al 2016 reported utilization of hexane to remove chlorophyll content. Ethyl acetate, dichloro methane etc. are also utilized as solvent in process of extraction (Sasidharan et al 2010). Sonification and maceration are also commonly utilized for extraction (Zygmunt and Namiesnik 2003, Huie 2002). Besides these other modern techniques (Table 1) with advantages of reduction in degradation of sample, reduced utilization of solvent, concentration of phytochemicals before purification through chromatography has also been utilized. Extraction is followed by Identification and Characterization of phytochemicals extracted from medicinal plants by various chromatography techniques (TLC, HPLC, GC, Column chromatography, Sephadax chromatography are most common and efficient technique utilized for identification of phytochemicals. HPLC analysis has specifically gained momentum in recent past for identification of phytochemicals. Results obtained through HPLC are not only accurate and precise but also reliable. Utilization of UV detectors in HPLC system efficiently detects those phytochemical which might be present in minimum quantity or concentration. Among several bio-analytical techniques employed for characterization of oil extracted from different parts (seeds, leaves, roots, rhizomes, etc.) GC-MS remains the most commonly utilized technique. Kasrati et al 2017 reported the presence of 27 phytochemicals in essential oil obtained from Mentha suaveolens as revealed by GC-MS analysis. The same study also reported an increase in antioxidant activity when the plants (M. suveolans) were cultivated with mineral fertilizers and VAM. Hagos et al 2017 extracted oil from leaves of Myrtus communis and reported presence of compounds through GC-MS analysis Eucalyptol, alpha linalool, linalyl anthromilate, alpha terpineol. The oil has been reported to be a potent source of antioxidant and antibacterial activities. Beets 2001 reported thymol, carvacrol to be major component of essential oil extracted from Origanum compactum. Similarly, Hassan et al 2016 subjected oil extracted from Carum coticum and reported p-cyme, beta-pinene, o-cymene and gamma terpenes to be major compounds present. Biochemical Composition of oil may vary among same species /genus cultivated under varying geographical/environmental conditions. Lawrence et al 1988 classified four different chemo types of Ocimum (Basil, a well-known medical herb) based upon Constituent of oil, the four chemo types were identified as methyl chavicol rich chemotype, linalool rich chemotype, methyl eugenol rich chemotype and lastly methyl cinnamate rich chemotype. Based upon geographical origin and major constituents Basil has also been classified into four different chemo types namely European chemotype rich in linalool and estragole, reunion chemotype rich in estragole, tropical chemotype rich in methyl cinnamate and eugenol chemotype rich in euganol (Koutsos et al 2009). Murarikova et al 2017 have also reported different chemotypes of Basil based upon GC-MS characterization of oil.
Table 1: Summary of techniques utilized in extraction and characterization of oil from medicinal plants

<table>
<thead>
<tr>
<th>Parameter to be achieved</th>
<th>Bioanalytical technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Isolation/Extraction</td>
<td>Soxhlet method, Maceration, Solid phase micro extraction, Microwave assisted extraction, Pressurized liquid extraction, Surfactant mediated techniques</td>
<td>Huie 2002, Zygmunt and Namiesnik 2003</td>
</tr>
</tbody>
</table>

BIOLOGICAL PROPERTIES OF OIL EXTRACTED FROM MEDICINAL PLANTS

Several studies conducted have revealed numerous biological, medicinal properties of oil extracted from medicinal plants. Antimicrobial activity of oil extracted from different parts of various medicinal plants have been the most commonly investigated biological activity however oil obtained from various plant species have been reported to possess anti-inflammatory, antidiabetic, anticancer, antiallergy, antioxidant activities. Table 2 summarizes biological / medicinal properties of oil extracted from medicinal plants.

Table 2: Medicinal property / biological activity of oil extracted from medicinal plants

<table>
<thead>
<tr>
<th>Name of Plant</th>
<th>Biological Activity</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymus Vulgaris</td>
<td>Insecticidal, antifungal, antioxidative</td>
<td>Eqbal 2017</td>
</tr>
<tr>
<td>Echinacea purpurea</td>
<td>Anti-inflammatory</td>
<td>Yu et al 2013</td>
</tr>
<tr>
<td>Santalum album</td>
<td>Used in cosmetics, anti-inflammatory</td>
<td>Heuberger et al 2006</td>
</tr>
<tr>
<td>Origanum vulgare</td>
<td>Anti-inflammatory</td>
<td>Fuentes et al 2011</td>
</tr>
<tr>
<td>Carum Copticum</td>
<td>Antibacterial</td>
<td>Hassan et al 2016</td>
</tr>
<tr>
<td>Myrtus Communis</td>
<td>Antioxidant, Antibacterial</td>
<td>Hagos et al 2017</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>antimicrobial activity antioxidant</td>
<td>Kislev et al 2006</td>
</tr>
<tr>
<td>Syzygium cumini</td>
<td>anti-inflammatory activity, Used in treatment of asthma, diarrhea, fever, diabetes</td>
<td>Benherlal and Arumughan 2007</td>
</tr>
<tr>
<td>Morus nigra L.</td>
<td>Antidiabetic, utilized against urinary tract infection</td>
<td>Volpato et al 2011</td>
</tr>
<tr>
<td>S. nigra L.</td>
<td>Diaphoretic, diuretic, expectorant, ointment and pectoral</td>
<td>Volpato et al 2011(b)</td>
</tr>
<tr>
<td>Papaver rhoeas</td>
<td>medicinal usage, especially for ailments in adults and children</td>
<td>Hasplova et al 2011</td>
</tr>
<tr>
<td>Korerima</td>
<td>used as spices, medicine, and means of soil conservation</td>
<td>Eyob et al 2008</td>
</tr>
<tr>
<td>Annona</td>
<td>for medicinal and nutritional purposes</td>
<td>Silva JJ et al 2014</td>
</tr>
</tbody>
</table>
CONCLUSION

Several studies conducted have revealed inherent medicinal property of oil present in several medicinal plants and there has been sufficient advancement so as to optimize extraction, purification and characterization of oil extracted from plant species. There is requirement of scaling up of production of such oil which can be achieved by initializing commercial cultivation of medicinal plant so as to produce sufficient raw material for oil extraction.

REFERENCES

11. commercial gas chromatographic stationary phases. J.

28. retention ratios with the use of conventional and novel

29. retention ratios with the use of conventional and novel

32. types of volatile oil constituents by various solute
