ON A GRACEFUL FAMILY OF 3-TUPLES

A. Vijayasankar1
1Assistant Professor,
Department of Mathematics,
National College,
Affiliated to Bharathidasan University,
Trichy-620 001,
Tamil Nadu,
India.

Sharadha Kumar2*
2Research Scholar,
Department of Mathematics,
National College,
Affiliated to Bharathidasan University,
Trichy-620 001,
Tamil Nadu,
India.

M.A. Gopalan3
3Professor,
Department of Mathematics,
Shrimati Indira Gandhi College,
Affiliated to Bharathidasan University,
Trichy-620 002,
Tamil Nadu,
India.

ABSTRACT
This paper concerns with the study of formulating 3-tuples consisting of polygonal and pyramidal numbers such that, in each three tuple, the sum of any two members is a perfect square.

KEYWORDS: 3-tuples, polygonal numbers, pyramidal numbers.

Notations:
- \(SO_n = n(2n^2 - 1) \) = Stella Octangular number of rank \(n \)
- \(CP^3_n = \frac{n(n^2 + 1)}{2} \) = Centered triangular Pyramidal number of rank \(n \)
- \(CS^4_n = \frac{n(2n^2 + 1)}{3} \) = Centered square Pyramidal number of rank \(n \)
- \(P^5_n = \frac{n^2(n + 1)^3}{2} \) = Pentagonal Pyramidal number of rank \(n \)
- \(P^4_n = \frac{n(n + 1)(n + 2)}{6} \) = Triangular Pyramidal number of rank \(n \)
- \(CP_{9,n} = \frac{n(3n^2 - 1)}{2} \) = Centered nonagonal pyramidal number of rank \(n \)
- \(CP_{24,n} = \frac{24n^3 - 18n}{6} \) = Centered icositetragonal pyramidal number of rank \(n \)
1. INTRODUCTION

Number patterns have occupied a unique position in the subject of Number Theory as they possess not only truth but also supreme beauty. Nearly every century has witnessed new and fascinating discoveries about the properties of numbers. For varieties of problems, one may refer [1-8]. The above problems motivated us for constructing three tuples. This paper concerns with the study of formulating 3-tuples consisting of polygonal and pyramidal numbers such that, in each three tuple, the sum of any two members is a perfect square.

2. METHOD OF ANALYSIS

Triple 1:

Let \(a = 2t_{3,2k} = 4k^2 + 2k \) and \(b = 2k + 1 \)
\[
a + b = (2k + 1)^2
\]
Let \(c \) be any non-zero integer such that
\[
a + c = \alpha^2 \\
b + c = \beta^2
\]
Using some algebra we have
\[
c = 24k P_{k-1}^3 - 2k
\]
Here \((2t_{3,2k}, 2k + 1, 24k P_{k-1}^3 - 2k)\) is the required triple such that the sum of any two members is a perfect square.

Properties:
- \(c - a + 2b + 2 \) is a perfect square
- \(c + 3a - 2b + 6 \) is a perfect square
- \(2a - b + c + 1 = 8k CP_k^3 \)

Triple 2:

Let \(a = Ct_{10,2k} = 20k^2 + 10k + 1 \) and \(b = 5t_{10,2k} = 80k^2 - 30k \)
\[
a + b = (10k - 1)^2
\]
Let \(c \) be any non-zero integer such that
\[
a + c = \alpha^2 \\
b + c = \beta^2
\]
Using some algebra we have
\[
c = 100(t_{8,k}^2 - 5t_{10,2k}, \ k > 1
\]
Here \((Ct_{10,2k}, 5t_{10,2k}, 100(t_{8,k}^2 - 5t_{10,2k})\) is the required triple such that the sum of any two members is a perfect square.

Properties:
- \(4(a - 1) - b \equiv 0(\text{mod} \ 70) \)
- \(3(a - 1) + b \equiv 0(\text{mod} \ 140) \)
- \(c - 4b - 15a \equiv 0(\text{mod} \ 15) \)
Triple 3:
Let $a = 8t_{3,k} = 4k^2 + 4k, k > 1$ and $b = 1$

$$a + b = (2k + 1)^2$$

Let c be any non-zero integer such that

$$a + c = \alpha^2$$
$$b + c = \beta^2$$

Using some algebra we have

$$c = 2kSO_k + 12CS_k^4 + 4t_{3,k-1} - 6k$$

Here $\left(8t_{3,k}, 1, 2k SO_k + 12CS_k^4 + 4t_{3,k-1} - 6k\right)$ is the required triple such that the sum of any two members is a perfect square.

Properties:
- $c - 2ka = 8k CP_k^3 - t_{25,k} - 15k$
- $2k^2a - c = 8k CP_k^3 - t_{10,k} + 5k$

For simplicity some more triples satisfying the required condition are given below:

<table>
<thead>
<tr>
<th>Triple 4</th>
<th>(\left(t_{12,2n} + 2t_{3,2n} + 1, t_{8,2n} - 2n, 6n + 24nCP_{9,n}^3\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple 5</td>
<td>(\left(t_{34,n} + t_{42,n}, 11GNO_n - 10, 4(t_{20,n}^2 - 48t_{10,n} - 68t_{3,n-1} + 142n^2)\right))</td>
</tr>
<tr>
<td>Triple 6</td>
<td>(\left(S_n, 6t_{12,n} + 18, 36nCP_{24,n} + 78n^2 + 6n\right))</td>
</tr>
<tr>
<td>Triple 7</td>
<td>(\left(4PR_n, 1, 8nP_n^5 - 24CP_n^3 + 8n\right))</td>
</tr>
<tr>
<td>Triple 8</td>
<td>(\left(7(6P_n^3 - 2P_n^3), 4t_{3,n} + 4, 36(t_{3,n}^2 - 28t_{3,n})\right))</td>
</tr>
</tbody>
</table>

3. CONCLUSION

In this paper we have presented triples involving polygonal and pyramidal numbers such that the sum of any two members of the triple is a perfect square. The readers of this paper may search for quadruples and higher order tuples with the sum of any two members as a perfect square.

REFERENCES

5. Vijayasankar A, Sharadha Kumar, Gopalan M A (2019), On the System of Equations $x + y = z + w, y + z = (x + w)^3$. Infokara Research, 8(9):595-597.
6. Gopalan M A and Sharadha Kumar (September 2019), On the System of Double Equations $x + y = z + w, y + z = (x + w)^3$. EPRA(IJMR), 5(9):91-95.
7. Shanthi J, Gopalan M A , Sharadha Kumar (September 2019), On the Pair of Equation $x + y = z + w, y + z = (x - w)^3$. Adalya Journal, 8(9):445-447.