VOICE BASED EMAIL SYSTEM USING PYTHON

Akshita Bhandari\(^1\), Aayushi Shukla\(^2\), Darshita Khanna\(^3\), Garima Verma\(^4\), Poorva Shinde\(^5\), Prof. Asif Ali\(^6\)

\(^{1,2,3,4,5}\) Student, Department of Information Technology
\(^6\) Associate Professor, Department of Information Technology
\(^{1,2,3,4,5,6}\) Acropolis Institute of Technology and Research, RGPV, Indore, India

ABSTRACT

The Internet has made people's lives easier by allowing them to access information, communicate with others, and expand their businesses. Using the internet to communicate email is often regarded as the most secure method of delivering and receiving sensitive information. Humans must satisfy a specific condition in order to access the Internet, and that condition is that they must be able to see. However, some visually impaired or blind people are unable to see things and hence are unable to profit from technology. As a result, we have come up with this project idea for the improvement of society and to give such specially abled persons an equal standing.

KEYWORDS: Python, Django, MySql, Technology, Database

1. INTRODUCTION

There were 4.1 billion email accounts generated until 2014, and by the end of 2018, there will be an anticipated 5.2 billion accounts. As a result, emails are the most often used mode of communication. Visually impaired people are unable to use the most common postal services that we use on a daily basis. This is due to the fact that they do not provide any means for the person in front of the screen to hear the content. They are unable to determine where to click in order to complete the essential actions since they are unable to visualise what is currently on screen. Even if it is user friendly, using a computer for the first time for a visually impaired person is not as easy as it is for a typical user.

With the help of a variety of assistive technology, the blind and visually impaired can now access Internet material. Web elements and their contents are translated into synthetic speech by built-in text-to-speech synthesisers in screen readers. Voice commands can be translated to text or computer input using dictation software that uses speech recognition technology. For those who have been educated to read braille, there are also refreshable braille screens and braille keyboards. In this case, the ultimate goal of technology is to provide the visually impaired with an online experience that is comparable to that of a person who is sighted. We've put together a comprehensive guide that outlines the challenges and limitations with the internet for the blind.

WebAIM recently ran an automatic search of the top one million pages to see if they were accessible. Only a small percentage of the websites met the accessibility compliance standards, according to the findings. One of the most significant discoveries was that most websites use ambiguous labels for page elements. Many images, buttons, and menu items are labelled as "image1," "button1," and so on, rather than being given a meaningful semantic label. When screen readers provide obscure descriptions to blind users, it just adds to their bewilderment and makes it more difficult for them to navigate the website. Incompatibility with screen readers, complex layouts, employing images and graphics instead of text, websites...
becoming unavailable due to software updates or adding new material, and so on are all examples of digital obstacles.

Designers and developers like to create appealing interfaces that catch the user's eye, so most online material is focused on visual display. To create a web application for visually impaired people that uses speech to send emails, E-mails are often regarded as the most secure mode of communication over the Internet for delivering and receiving sensitive information. However, people must meet a specific criterion in order to use the Internet, and that criterion is that you must be able to see. However, there are blind persons who cannot read or use a keyboard, thus we've come up with the idea of voice-based email to communicate information. They may quickly communicate and obtain information by sending and receiving emails in voice. Audio feedback virtual environments, such as screen readers, have greatly aided Blind persons in using online apps. We describe the Voicemail system architecture that can be used by a Blind person to access eMails easily and efficiently.

As a result, we've devised this project in which we'll create a voice-based email system that will allow visually impaired persons who aren't familiar with computers to utilise email without difficulty. This system's users would not require any basic knowledge of keyboard shortcuts or where the keys are placed. All of the functions are controlled by a single mouse click. The system will issue voice orders to the user to accomplish a certain action, and the user will react. The fundamental advantage of this method is that it eliminates the need for a keyboard; instead, the user must answer solely by voice and mouse clicks.

2. RELATED WORK

While working on this project, we discovered a number of applications that had the same goal as us. Visually impaired people are unable to use the most common postal services that we use on a daily basis. This is due to the fact that they do not provide any means for the person in front of the screen to hear the content. They are unable to determine where to click in order to complete the essential actions since they are unable to visualise what is currently on screen.

<table>
<thead>
<tr>
<th>Existing System</th>
<th>Features</th>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoiceTalk</td>
<td>Users can easily interact with anyone without typing any single word from the keyboard</td>
<td>The Application helps not only to the blind individual but also to the individual who is illiterate.</td>
<td>Multiple users cannot use the application due to lack of database.</td>
</tr>
</tbody>
</table>

Even if it is user friendly, using a computer for the first time is not as convenient for a visually impaired person as it is for a typical user. Despite the fact that there are numerous screen readers available, these individuals nevertheless experience some minor challenges. Screen readers read aloud whatever is on the screen, and the user must utilise keyboard shortcuts as blind people cannot use mouse location to trace to conduct the actions. This involves two things: first, the user cannot use the mouse pointer since it is inconvenient if the location of the pointer cannot be traced, and second, the user should be familiar with the keyboard and know where each key is situated. As a result, a user who is new to computers will be unable to use this service since they are unaware of the important places.

The suggested system is based on an entirely new concept and is unlike any other postal system already in use. The accessibility of the proposed system is the most essential factor that has been considered. Only when a web system can be utilised effectively by all types of individuals, whether able or disabled, is it said to be totally accessible. This accessibility is not provided by current systems. As a result, the system we're creating is vastly different from the current one. Unlike the existing system, which prioritises user friendliness for normal users, our approach prioritises user friendliness for all types of people, including normal persons who are visually impaired and illiterate. IVR (interactive voice response) underpins the entire system.

When utilising this system, the computer will prompt the user to execute specified activities in order to access particular services, and the user must complete those activities in order to access those services. One of the most significant advantages of this system is that it
eliminates the need for the user to utilise a keyboard. All actions will be triggered by mouse clicks. The challenge now is how blind users will determine where the mouse pointer is located. Because the blind user cannot track a specific spot, the system has given the user the freedom to click wherever on the screen. The IVR will specify which sort of click will do which function. As a result, the user does not have to be concerned about the mouse's placement.

3. METHODOLOGY

The entire system is dependent on voice prompts and mouse clicks. When utilising this system, the computer will prompt the user to execute specified activities in order to access particular services, and the user must complete those activities in order to access those services. One of the most significant advantages of this system is that the user will rarely need to use a keyboard. All actions will be triggered by mouse clicks. The challenge now is how blind users will determine where the mouse pointer is located. Because the blind user cannot track a specific place, he or she must move the mouse across the screen from top to bottom and then left to right. Because it is only a basic system, it will be fully accessible to all types of users.

Figure 1. Block diagram of Voice Based Email

Software Requirements

II. Coding Language : Python 8 andabove.
III. IDE : Pycharm.
IV. Front End :HTML CSS, Bootstrap.
V. Back End : Python
VI. Database : MySQL
After successful login, the user will be provided. The speech and defined all of the alphabet units to proclaim street employed on handheld devices such as portable GPS units to proclaim street names. A string of 50 characters of text (alphabets and/or digits) is accepted as input by our Text-to-Speech Converter.

We've connected the keyboard to the controller and defined all of the alphabet and digit keys on it in this. The speech processor has an infinite dictionary and, in most cases, can speak practically any text provided at the input.

After successful login, the user will be redirected to this page and this is the main page from where user can perform all the activities like, compose a new mail, check inbox, save to draft etc. • Left Click to Compose a new Mail.

• Right Click to Go to the Sent Mails.
• Double Left Click to Go to the Inbox View.
• Scroll Button Click to go to Trash Messages.
• Double Right Click to Log out of the Session.

Inbox: This page will store all of the mails received by the user. Below steps explains how to access a mail from inbox:

• All the received Mails will be listed sorted in order of date
• Double left Click to give voice input to filter Mail, when Satisfied Left click to proceed
• In this Stage your mail will be read out, Double Left Click to start/pause

Trash: This folder will store all of the mail deleted by the user.

• All the deleted Mails will be listed sorted in order of date
• Double Left Click to start/pause
• Left Click to proceed to Delete the Mail or Right Click to back • If in Delete Section Left Click to Delete the Mail

Sent Mail: This folder will store all of the mails sent from the user.
4. RESULTS AND DISCUSSION

Our team looked at a variety of apps and websites related to the application's growth as well as agriculture. We designed and built a user-friendly mobile application that offers multiple features in one app for the users. The most critical factor is accessibility which is needed most to access the email services for both visually impaired and illiterate.

The results from the desktop Application are represented with pictures of each page of the desktop Application-

![Flowchart](image-url)

Figure 2. The above figure explains the complete flow of the process.
Select the choice you want to perform by speaking and the application will complete the process efficiently without even looking at the screen to access anything.

Using speech synthesis techniques to convert text to voice production. While it was originally developed for the blind to listen to written content, it is now widely used to transmit financial data, e-mail messages, and other information to the general public via telephone. When giving instructions, text-to-speech is often used on mobile devices such as portable GPS systems to announce street names.

5. CONCLUSION AND FUTURE SCOPE

A detailed report with colourful maps, a colourful graph with the theory, balance, and interest, and a colourful graph with the principle, balance, and interest are all included. The website is user-friendly and accessible to all types of users. In this research, we propose a system to help visually impaired people access email services more successfully. This technology will help blind people.

To use the services, the user only needs to follow the IVR’s directions and make the relevant mouse clicks. This e-mail system is simple to use and suitable for people of all ages. With the use of a speech interpreter, it can translate speech to text as well as text to speech, making it a device that can be used by both visually impaired and blind persons.

FUTURE SCOPE

E-mailing isn’t a significant difficulty for those who can see, but it’s a major worry for those who don’t have the gift of sight because it intersects with so many job obligations. This voice-based email system is useful for blind individuals since it allows them to comprehend where they are. For example, whenever the cursor travels over the Register icon on the page, it will sound like “Register Button.” There are a plethora of screen readers to choose from. People, on the other hand, have to recall mouse clicks. Rather, because the mouse cursor will read out where he or she is, this project will alleviate the difficulty. This method places a greater emphasis on user friendliness for all types of people, including typical people who are visually impaired.

6. ACKNOWLEDGMENT

We would like to express our special gratitude to Prof. Asif Ali as well as our college “Acropolis Institute of Technology and Research.” who gave us this golden opportunity to do this wonderful project on the topic “VOICE BASED E-MAIL” and to guide us at different stages during preparation of this project and the report following that, which also helped us in doing a lot of research and we came to know about so many things, We are really thankful to them.

7. REFERENCES

