TREATMENT OF FERTILIZING TYPE OF FACTORY FACTORY IN TREATMENT AND FOOD

¹Shamsiyev Akmal Sadirdinovich
¹Candidate of Historical Sciences, Professor, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan,

²Kamilov Bakhtiyor Sultanovich
²Ph.D, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan,

³Ziyatov Musulman Panjievich
³Ph.D, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan,

⁴Karshiev Rustam
⁴Independent Researcher, At the Irrigation and Water Problems Research Institute, Uzbekistan,

⁵Togaev Shukhrat Mirakhmatovich
⁵Small scientists, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan,

⁶Eshonkulov Jamoliddin
⁶Base doctoral student, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan,

⁷Muhammadieva Oygul Normengliyevna
⁷Small Scientists, Research Institute of Cotton Breeding, Seed Production and Cultivation Agrotechnology, Uzbekistan.

ABSTRACT
Effectiveness of applying different rates of mineral fertilizers with the method of fertigation in furrow irrigation and in mulching with black polyethylene film of cotton in the condition of old irrigated typical sierozem soils of Tashkent province were presented in article.

KEYWORDS: soil weight, poorness, guzanian irrigation, black polyethylene film, mineral fertilizers, fertigation, flexible pipe, pipe.

INTRODUCTION
Today, the use of new innovative technologies in the irrigation and feeding of cotton with mineral fertilizers in the country achieves a uniform moistening of the active layer of the soil, which is the root system of plants, and an increase in fertilizer utilization. With the creation of optimal soil, air, heat and nutrient regimes in the soil, the growth and development of plants are accelerated, and ultimately high and quality yields are achieved.

Irrigation with mulch between rows of cotton with a black polyethylene film and the application of mineral fertilizers in the form of water-soluble fermentation is of great practical and theoretical importance. In recent years, drip irrigation of cotton fields and the use of polyethylene film between rows to irrigate and dissolve mineral fertilizers in water, as well as the distribution of irrigation water through irrigation pipes, have not only saved water, but also made it possible. Therefore, in the effective use of
available water resources and mineral fertilizers in cotton growing, it is necessary to introduce the method of fertilization of irrigation and feeding mulch between rows of cotton.

In the research carried out by GA Bezborodov [3], as a result of irrigation between rows of cotton with mulch of winter wheat straw, the soil is evenly moistened for a long time, due to the lack of nutrients and mineral fertilizers, irrigation water retention by 20%. It is also possible to reduce the number of intercrops by 3-4 times compared to the control, to save 25-30% of FDI, to reduce the fertile layer of the soil, to prevent damage to the root system, and to create favorable conditions for plant growth and development. The increase in the number of soil microorganisms and the amount of mineralized nitrogen in plant residues, the acceleration of biochemical processes in the soil, the increase in its biological and enzymatic activity were noted.

MATERIALS AND METHODS

A. Avliyakalov [2; Pp. 244-248], in the conditions of typical glacial soils of Tashkent region in the cultivation of drought-resistant varieties of cotton "Denov" irrigation is carried out at a rate of 65-65-60% relative to the CDNS, nitrogen fertilizers at 100 kg per hectare, 100 kg of nitrogen fertilizers per 100 kg. a high yield of 36.8 quintals of cotton was obtained. GA Bezborodov [4]. According to a study conducted by pp. 9-14, an average of 6 million tons of grain is harvested annually in the country. tons of somoni will be grown. Research on the use of straw as mulch is important in maintaining soil fertility and natural Restoration of its macro-physical properties, such as mass, porosity, water permeability and field moisture capacity, were studied in detail. 1.29 g / cm3 in the 0–30 cm layer, 52.2%, 1.31 g / cm3 in the 0–50 cm layer, 51.4% and an average of 1.33 g in the 0–70 and 0–100 cm layers. / cm3 and 50.7%.

RESULTS AND DISCUSSION

Towards the end of the growing season, in the 1st variant, where mineral fertilizers are traditionally applied, the volume mass of the soil is 0–30 cm in furrows and 0–50 cm in layers of 1.34 and 1.36 g / cm3, in the lower 0–70 cm, 0–100 cm layers. 1.38 g / cm3. In Option 2, when mineral fertilizers are dissolved in water with irrigation, the bulk density of the soil is 1.34 g / cm3 in the 0–30 cm tillage layer, and 1.36 g / cm3 in the 0–50 cm layer, and 0–70 and 0–100 cm in the lower layer. layers averaged 1.37 and 1.38 g / cm3, respectively. When mineral fertilizers are applied in conjunction with irrigation on filmed soils, the bulk density and porosity of the soil are 1.31 g / cm3 in the 0–30 cm plowing layer and 51.3% in the 0–50 cm layer, 1.33 g / cm3 and 50.6% lower 0 in the layers -70 and 0–100 cm, the average was 1.35 g / cm3 and 50.0%. It was noted that the optimal values of soil volume were observed in the variants of mineral fertilizers in...
water-soluble variants with irrigation in film-covered areas (Fig. 1).

According to the three-year study, the annual agrotechnical measures, in particular, the application of black polyethylene film between rows of cotton and the application of nitrogen fertilizers by means of flexible pipes, the volume of soil at the end of the season is 0.0 kg/m³. During the study years, at the beginning of the operation period, the porosity of 0–30 and 0–50 cm of soil relative to the bulk density was 52.2, respectively; 51.4. In the 0–70 and 0–100 cm strata, 51.1 and 50.7 per cent, respectively (Fig. 2).

In our options, cotton is irrigated 6 times at the rate of 602–980 m³, while the average seasonal water rate is 4075 m³ per hectare. In the variants irrigated in flexible polyethylene film mulched pipes between rows, it was observed that during the growing season the cotton was irrigated 6 times at the rate of 500–590 m³ per hectare and the seasonal water norm was 2980 m³ per hectare. In practice, the average yield of cotton was 35.9 centners per hectare in the first variant, when mineral fertilizers were applied in the traditional way at 100%, and 34.9 centners in the second variant, when mineral fertilizers were dissolved in water together with irrigation. It was observed that in the 3rd variant, when mineral
fertilizers were dissolved in water together with irrigation in the film-covered areas, in option 3, it was 38.2 centners. This indicator averages 28.2-32.0 centners in 4-7 variants of 75-50% annual application of traditional mineral fertilizers, and an average of 27.0-32 in 5-8 variants of 75-50% annual solubility with irrigation. . 5 centners. It was found that the average fertilizer yield was 30.2-34.7 centners in 6-9 variants, when the mineral fertilizers were dissolved in water along with irrigation in the filmed areas.

CONCLUSION
An additional 3.3 quintals of cotton per hectare was obtained in 3 variants given by the method of fermentation when dissolved in water in comparison with the 1st variant, which is traditionally fed with mineral fertilizers at the rate of 100% per annum. An additional yield of 2.7 quintals of cotton was achieved with the traditional method of mineral fertilizers at the rate of 75% per annum, and with the traditional method of mineral fertilizers at the rate of 50% per annum - 2.0 quintals.

In summary, using portable flexible pipes for watering cotton plants and applying fertigation method to provide mineral fertilizers bring equal water distribution, efficient use of land, prevention of excess water evaporation and evaporation, prevention of water leakage into the lower layers, rising groundwater levels, as well as environmental protection and efficient use of water.

REFERENCE