CLASSIFICATION RISKS OF THE AGRICULTURAL PRODUCTION CHAIN

Berdieva Z.M., Mukhamadieva Z.B.
Bukhara Engineering technological Institute, Bukhara, Uzbekistan

ABSTRACT
The agro production chain is often faced with various risks arising at specific links in the chain. For a detailed study of these risks, they should be classified based on certain indicators, which is discussed in this article. Abilities u ubiquity of the consequences of risk and the reversibility of the consequences of risk, i.e. normal risk is simple and well explained by science and legislation. Intermediate zone and non-tolerant zones cause more problems due to the fact that the risks occupy an area that goes beyond the normal damage. Within these zones, the confidence of the estimates is low, the statistical uncertainty is high, and the potential for destruction can reach dangerous limits.

KEY WORDS: risk, classification, probability, hazard, agribusiness, management. Word of Damocles, Cyclops, Pitya, Pandora's Box, Cassandra.

INTRODUCTION
From a scientific point of view, risks are traditionally characterized by the degree of damage and the likelihood of occurrence. Both product characteristics can be measured for risk classification. It is also helpful to include other evaluation criteria.
1. Uncertainty (refers to statistics).
2. Appropriate definitions of the geographic distribution of potential damage.
3. Permissive definitions of a moderate amount of potential damage.
4. Repeatability of descriptions of the possibility of restoring the situation to the state before the damage was committed (restoration skills are possible – reforestation and water purification).
5. The delay of the effect characterizes the large latency period between the initial state and the actual event of damage. Latent time can be of physical, chemical or biological nature.
6. Mobilization potential is understood as a person's violation, social or cultural interests, and meanings that generate social conflicts and psychological reactions of a person or group who suffer from the consequences of risks. In particular, this relates to the perceived inequities determination of risks and rewards [1,2,3].

RESULT AND DISCUSSION
Traditionally, there are 3 types of risks. Normal, average and tolerant.
Normal is characterized by little statistical uncertainty, low destructive potential, low damage count, where product capabilities and damage are considered, low scores on criteria. Abilities u ubiquity of the consequences of risk and the reversibility of the consequences of risk, i.e. normal risk is simple and well explained by science and legislation. Intermediate zone and non-tolerant zones cause more problems due to the fact that the risks occupy an area that goes beyond the normal damage. Within these zones, the confidence of the estimates is low, the statistical uncertainty is high, and the potential for destruction can reach dangerous limits. These risks can also generate global, irreversible damage that can accumulate for a very long time, or mobilize or frighten a population. In this case, attituoue risks of aversion are absolutely acceptable due to the fact that the boundaries of human knowledge are reached [4,5,6].

In theory, a huge number of risk classes can arise from the criteria. Such a multitude of cases would not be useful for the purpose of developing an appropriate risk classification. Therefore, a classification was developed, where the same risk candidates are classified within a risk class in which they reach or exceed one or more possible limit
amounts in accordance with 8 criteria (table). This classification leads to 6 classes of risks, which are given names from Greek mythology [1]. Risks of the Domoklov Sword class.

Many sources of technological risk have a very high destructive potential, although the likelihood that this potential manifests itself in damage is very low. Typical examples are gas stations, chemical plants, dams, and a meteorite attack. The initial characteristic of this class of risks is their combination of low probability with high damaging ability. In theory, damage can occur at any time, but thanks to the protective measures in place, it is hardly expected.

Cyclops-class risks.

For risks of the “Cyclops” class, the probability of manifestation is extremely uncertain, then how the maximum damage can be calculated. It often happens that these risks cannot be assessed. A number of natural phenomena such as volcanic eruptions, earthquakes, floods belong to this category. Often there is little knowledge of the parameters of the event or a short observation time during which cyclical regularity is identified.

In another case, human behavior affects the likelihood of occurrence in such a way that these criteria become vague. Therefore, the emergence of AIDS, COVID-19 and other infectious diseases, as well as early warning systems for nuclear attacks, also belong to this class of risks.

Pitya class risks.

This class of risks refers to potential risks for which the degree of damage is unknown, and therefore, the likelihood of occurrence also cannot be estimated with a certain accuracy. In this respect, we must assume for the potential of risks of this class that there is a huge uncertainty about the possible damaging effects, and thus also about the uncertainty of damage.

This class includes risks associated with the likelihood of sudden, non-linear climatic changes, such as the risk of global warming, or the instability of the East Antarctic ice sheet, with greater devastating consequences than these land climatic changes. It further includes deep technological innovation in some of the causes of genetic engineering, for which neither the maximum amount of damage nor the likelihood of occurrence of certain damage cases can be estimated from the point of view of modernity. Finally, the class "drinking" includes chemical and biological substances for which some effects are expected, but neither their magnitude nor their likelihood can be estimated with any precision. BSE risks are a good example of this.

Risks of the class "Pandora's Box".

Risks of this class are characterized by both uncertainty in terms of the probability of occurrence and the degree of damage (only presumptions), as a consequence of high ubiquity, ability and non-repeatability. In addition to permitted organic fertilizers and changes in the biosystem, endocrine disorders can serve as an example.

Risks of the class "Cassandra". These risks refer to risks characterized by a relatively long delay between the triggering event and the occurrence of damage. This case is usually interesting if both the probability and the magnitude of the damage are relatively high. If the time interval was short, then the regulatory authorities should intervene, because the risks are precisely in the non-tolerant zone. However, the time interval between the trigger and the consequence is determined by the fallacious manifestation of security. First of all, the assumption that the cause will be found before the actual damage can be accepted by us as an excuse for and activation. Anthropogenic climate change and biodiversity loss are typical examples of this effect.

Meduza-class risks.

Risks belonging to this class refer to the potential for public mobilization. These risks are interesting in the event that there is a great gift between the perception of risk and the result of the analysis of risk experts. The probability of threat occurrence as well as damage is limited. Irradiated food is a typical example of this [3].

CONCLUSION

The main purpose of risk classification is to place risks in one of three zones in order to be able to select an effective and appropriate strategy, regulations and measures for risk policy at different political levels. Characteristics provide a basis of knowledge so that policymakers' decisions have better prescriptions on how to select measures for each risk class. The strategic pursuit goal is to transform inaccessible risks into accessible ones, i.e. risks should not be reduced to zero, but move into a normal zone in which overall risk management and cost-effective analyzes will be sufficient to guarantee safety and integrity. Table 1 Various management strategies for different classes of risks are presented.
Table 1. Overview of management strategies

<table>
<thead>
<tr>
<th>Management</th>
<th>Risk class</th>
<th>Damagedegree</th>
<th>Probability of occurrence</th>
<th>Action strategy</th>
</tr>
</thead>
</table>
| scientificfaltification | swordofDamoicles | high | low | 1. reduction of destructive potential
2. undefined probability |
| | | | | |
| | Cyclops | high | undefined | 3. increasing resilience
4. presenting surprises
5. hazard management |
| Precautionary | pitya | undefined | | 6. implementing Preemptive Principles
7. development of substitutes
8. improve knowledge |
| | Pandora's Box | | | |
| discursive | cassandra | high | high | 9. prediction containment
10. hazard management |
| | felliFish | | | 11. consciousness building
12. conscience building
13. public participation in risk communications |
| | | | | 14. contingency manegment |

REFERENCES

4. Mukhammadieva Z.B. Universum: Moscow, 2020, Issue: No. 3 p. 35