ASSESSMENT OF THE CORRELATION BETWEEN THE PUS CELL COUNT AND THE pH LEVEL OF VIALBE ISOLATES OF URINE SAMPLES FROM URINARY TRACT INFECTIONS AMONG PRIMARY SCHOOL BOYS IN ADO LOCAL GOVERNMENT, EKITI STATE, NIGERIA

Oluwafoise, B. G.
Department of Biology,
College of Education,
Ikere-Ekiti, Ekiti State,
Nigeria.

ABSTRACT
A total number of 240 urine samples from primary school boys were collected from different primary schools within Ado-Ekiti. The urine samples were collected for isolation, cultural characteristics and biochemical identification of enteric bacteria and other UTI pathogens which may be present in the urine sample of children attending public schools in Ado-Ekiti. Insignificant growth occurred in 200 (83.33%) of the isolate, 33 (13.75%) of the samples did not have any growth, while 7 (2.92%) sample had significant growth. Pus cell count was carried out to determine the correlation between the pus cell count the pH of the seven samples with significant growth. The result showed that there was a direct correlation between the pus cell count and the pH of samples with significant growth, showing that 50% of children with significant bacteriuria had significant pus cell count, with alkaline pH in their urine.

INTRODUCTION
Urinary tract infection (UTI) is an infection that occurs when bacteria gain access into urinary system i.e the bladder and the kidney. UTI is one of the most common bacterial infections in children and requires prompt recognition, treatment and investigations (Fenwick, Briggs, and Hawke, 2010).

Urinary tract infection represents one of the most common types of infectious disease encountered in the practice of medicine today. The infection may cause significant morbidity, inconveniency and anxiety in children and their families and result in considerable consumption of resources (Jantunen et al, 2010). Generally, any situation that leads to state of urine in the bladder frequently increases the chance of UTI as this enhances the multiplication of bacteria (Fenwick et al, 2010).

Urinary tract infection can be categorized into two areas of involvement. This includes (i) cystitis (bladder infection) and (ii) pyelonephritis (kidney infection) cystitis implies a superficial mucosal inflammation of the bladder, clinically characterized by dysuria, urinary urgency, nocturia, supra public discomfort, and less often, hematuria and urinary inconveniency. (Ardissino et al, 2003).

Symptoms of urinary tract infections are usually non-specific in a baby or child. Unexplained fever or fever without an obvious source is the only consistent symptoms among young children with UTI.
Urinary tract is diagnose by testing the urine for the present of pus cells and bacteria (Jodal, 2017).

Antibiotic to kill the bacteria are use in the treatment of UTI. Children are often admitted to hospital for more aggressive and effective antibiotics treatment by injecting the antibiotics directly in to the blood stream through a drip or what is termed intravenous antibiotics treatment (Vaillancourt et al., 2017).

Pus is the result of the body’s natural immune system automatically responding to an infection usually by bacteria of fungi. The normal range of pus cell in normal healthy male urine is 0 -1 pus cell per hpf or high power field under the microscope (chaudhari, et al. 2016). The presence of pus cells urine is often indication of an urinary tract infection. However UTI may affect different parts of the urinary tract causing different condition. If it infect the urethra, the infection is called urethritis. If pus cell are present in the urine specimen, as shown in table 1, the corresponding urine samples, as shown in table 1.

The normal range of pus cell is 0-5, 8-10 range of pus cell indicates the presence of bacteria, hence the presence of urinary tract infection.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Bacteriuria</th>
<th>Pus cell count</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Asymptomatic</td>
<td>Nil</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>Symptomatic</td>
<td>Significant</td>
<td>8</td>
</tr>
<tr>
<td>100</td>
<td>Symptomatic</td>
<td>Significant</td>
<td>7</td>
</tr>
<tr>
<td>120</td>
<td>Asymptomatic</td>
<td>Nil</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>Asymptomatic</td>
<td>Nil</td>
<td>5.5</td>
</tr>
<tr>
<td>203</td>
<td>Symptomatic</td>
<td>Significant</td>
<td>8</td>
</tr>
<tr>
<td>210</td>
<td>Symptomatic</td>
<td>Significant</td>
<td>8</td>
</tr>
</tbody>
</table>
DISCUSSION AND CONCLUSION

Urinary tract infection is a problem of great medical importance worldwide. Urinary tract infections have been known to be caused mainly by the family of gram-negative rod-shaped aerobic organism called Enterobacteriaceae.

In this work, urine samples were collected from 240 apparently healthy primary school boys within Ado-Ekiti. 200 (83.33%) urine samples showed an significant growth, 33 (13.75%) of the samples did not give any growth while 7 (2.92%) showed a significant bacteria count.

In this work, the result shown that there was correlation between pus cell count, symptomatic bacteriuria and pH of the corresponding isolates. This can be seen in table 1. A significant pus cell count was obtained in 4 out of the 7 isolated samples, with a corresponding pH range between 7.8-8 recorded. The remaining 4 isolates showed an insignificant pus cell count and asymptomatic baceteriuera resulting in a pH range between 5.6.

REFERENCES