Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
Mrs. M. Josephine Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr. Said I. Shalaby, MD, Ph.D.
 Professor & Vice President
 Tropical Medicine,
 Hepatology & Gastroenterology, NRC,
 Academy of Scientific Research and Technology,
 Cairo, Egypt.
2. Dr. Mussie T. Tessema,
 Associate Professor,
 Department of Business Administration,
 Winona State University, MN,
 United States of America,
3. Dr. Mengsteb Tesfayohannes,
 Associate Professor,
 Department of Management,
 Sigmund Weis School of Business,
 Susquehanna University,
 Selinsgrove, PENN,
 United States of America,
4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU),
 UAE.
5. Dr. Anne Maduka,
 Assistant Professor,
 Department of Economics,
 Anambra State University,
 Igbariam Campus,
 Nigeria.
6. Dr. D.K. Awasthi, M.Sc., Ph.D.
 Associate Professor
 Department of Chemistry,
 Sri J.N.P.G. College,
 Charbagh, Lucknow,
 Uttar Pradesh, India
7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
 Assistant Professor,
 School of Social Science,
 University of Jammu,
 Jammu, Jammu & Kashmir, India.
8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSSR Research Institute,
 New Delhi- 110070, India.
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural
 Sciences,
 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor (2017): 5.705

EPRA International Journal of Research & Development (IJRD)
Monthly Peer Reviewed & Indexed International Online Journal
Volume: 3, Issue: 10, October 2018

Published By:
EPRA Journals

CC License
ADOPATION OF RECOMMENDED CASTOR HYBRID PRODUCTION TECHNOLOGY AMONG THE CASTOR GROWERS OF TAMIL NADU

Hema, P
1Assistant Professor, Department of Agricultural Extension, Imayam Institute of Agriculture & Technology, Tamil Nadu

Asokhan.M2
2Professor, Department of Agricultural Extension and Rural Sociology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu.

ABSTRACT

Indian vegetable oil economy is world’s fourth largest after USA, China and Brazil. India is largest producer of castor and contributes to around 65 per cent of total production and dominating the global trade with a share of more than eight per cent. Nowadays, castor cultivation is beset with lots of problems of varying rainfall pattern, biotic and abiotic stress etc., So, the productivity of castor can be increased with the use of latest castor hybrids and altering the planting pattern, implementing mechanization methods and adoption of production technologies. Keeping this in the view, the present study “Adoption of recommended castor hybrid production technology among the castor growers of Tamil Nadu” was undertaken in Tiruchengode block of Namakkal district and Edappadi block of Salem district in Tamil Nadu. Exactly 120 castor growers were selected proportionately from eight selected villages. Using a pre-tested and well structured interview schedule, the necessary data was collected and statistically analyzed. From the analysis, it is concluded that most of the cultivators possessed medium to high level of adoption in castor cultivation technologies. The major constraints faced by the castor farmers in adoption were inadequate finance, lack of technical guidance, high cost of fertilizer, unavailability of certified seed and lack of irrigation water.

KEY WORDS: Castor, Adoption, Production Technology

INTRODUCTION

Indian vegetable oil economy is world’s fourth largest after USA, China and Brazil. Oilseed cultivation is undertaken across the country over an area of more than 26 million ha, largely under rainfed areas (72.00%) with high risk of investment. India is largest producer of castor and contributes to around 65 per cent of total production and dominating the global trade with a share of more than eight per cent. Castor oil is used in many veterinary medicines. It is used externally as an emollient. After extraction of oil, castor cake is valued as manure. It contains 6.40% N, 2.50% phosphoric acid and 1.00% K and some micronutrients. Castor is also valued for its anti-termite properties.

Castor crop is raised on light textures soils under dry land by small farmers with low inputs and poor management resulting in reduced yield and net
returns in irrigated and rainfed farming system. Due to that, castor cultivation is beset with lots of problems of varying rainfall pattern, biotic and abiotic stress etc., Castor farmers in the arid and semi-arid tracts of Tamil Nadu decides it was no longer remunerative crop which leads to decline in castor growing area. Having this issue, high yielding, drought resistant cultivar suited to rainfed as well as irrigated conditions have been developed. So, the productivity of castor can be increased with the use of latest castor hybrids and altering the planting pattern, implementing mechanization methods and adoption of production technologies. Keeping this in the view, the present study “Adoption of recommended castor hybrid production technology among the castor growers of Tamil Nadu” was undertaken.

METHODODOLOGY

The study was conducted in Tiruchengode block of Namakkal district and Edappadi block of Salem district in Tamil Nadu. A sample size of 120 castor growers were selected from eight villages by using proportionate random sampling technique. Extent of adoption refer to measure how for a particular technology was adopted by an individual correctly without any distortion of message. Totally 25 major castor production technologies were selected to study the extent of adoption. In present study, the maximum possible score for the adoption of castor hybrid technologies was 44. Based on the adoption index, respondents were categorized into low, medium and high extent of adoption based on cumulative frequency method. The percentage analysis was also worked out to study the practice wise adoption.

FINDINGS AND DISCUSSION

Extent of adoption of recommended castor hybrid production technology

In order to assess the extent of adoption of recommended castor hybrid production technologies, necessary data were collected and the findings are presented in Table 1 and 2.

Overall adoption of recommended castor hybrid production technology

Results of distribution of castor growers according to their overall adoption of castor hybrid production technologies are presented in Table – 1.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Category</th>
<th>Numbers</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>14</td>
<td>11.70</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>72</td>
<td>60.00</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>34</td>
<td>28.30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

It could be observed from Table 1 that exactly three-fifth (60.00%) of the respondents were medium level in the adoption of technologies followed by high (28.30%) and low (11.70%) levels.

The reason for medium to high level of adoption might be due to high level of knowledge about recommended practices, better contact with extension agencies, high level of scientific orientation, increased income and economic motivation among castor growers. The finding derives support from the findings of Mandavkar and Talthi (2013).

Technology-wise adoption level of the respondents

Adoption of recommended technologies varies from individual to individual. Hence, the data on technology-wise adoption of recommended technologies were collected and the findings are presented in Table 2.
Table 2. Distribution of respondents according to their technology-wise adoption level on castor cultivation (n=120)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Technologies</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Crop production technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Season</td>
<td>120</td>
<td>100.00</td>
</tr>
<tr>
<td>2.</td>
<td>Hybrid</td>
<td>120</td>
<td>100.00</td>
</tr>
<tr>
<td>3.</td>
<td>Seed rate</td>
<td>99</td>
<td>82.50</td>
</tr>
<tr>
<td>4.</td>
<td>Spacing</td>
<td>94</td>
<td>78.34</td>
</tr>
<tr>
<td>5.</td>
<td>Fungicide</td>
<td>61</td>
<td>50.83</td>
</tr>
<tr>
<td>6.</td>
<td>Bio fertilizer</td>
<td>53</td>
<td>44.16</td>
</tr>
<tr>
<td>7.</td>
<td>Depth of sowing</td>
<td>120</td>
<td>100.00</td>
</tr>
<tr>
<td>8.</td>
<td>Number of seeds sown per hole</td>
<td>120</td>
<td>100.00</td>
</tr>
<tr>
<td>9.</td>
<td>Gap filling</td>
<td>120</td>
<td>100.00</td>
</tr>
<tr>
<td>10.</td>
<td>Irrigation</td>
<td>105</td>
<td>87.50</td>
</tr>
<tr>
<td>11.</td>
<td>Drip irrigation</td>
<td>21</td>
<td>17.50</td>
</tr>
<tr>
<td>12.</td>
<td>Quantity of FYM/Compost application</td>
<td>62</td>
<td>51.67</td>
</tr>
<tr>
<td>13.</td>
<td>Fertilizer as Basal on 30th and 60th day</td>
<td>45</td>
<td>37.50</td>
</tr>
<tr>
<td>14.</td>
<td>Fertilizer as top dressing</td>
<td>48</td>
<td>40.00</td>
</tr>
<tr>
<td>15.</td>
<td>Inter cultivation</td>
<td>36</td>
<td>30.00</td>
</tr>
<tr>
<td>16.</td>
<td>Castor gold spray</td>
<td>11</td>
<td>9.16</td>
</tr>
<tr>
<td>17.</td>
<td>Weed management</td>
<td>82</td>
<td>68.34</td>
</tr>
<tr>
<td>B.</td>
<td>Plant protection technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Control measure for tobacco caterpillar</td>
<td>42</td>
<td>35.00</td>
</tr>
<tr>
<td>19.</td>
<td>Control measure for semi-looper</td>
<td>39</td>
<td>32.50</td>
</tr>
<tr>
<td>20.</td>
<td>Control measure for fruit borer</td>
<td>32</td>
<td>26.67</td>
</tr>
<tr>
<td>21.</td>
<td>Control measure for fruit rot</td>
<td>27</td>
<td>22.50</td>
</tr>
<tr>
<td>22.</td>
<td>Control measure for wilt</td>
<td>41</td>
<td>34.16</td>
</tr>
<tr>
<td>C.</td>
<td>Technologies pertaining to harvest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Physiological maturity</td>
<td>106</td>
<td>88.34</td>
</tr>
<tr>
<td>24.</td>
<td>Harvesting time</td>
<td>112</td>
<td>93.34</td>
</tr>
<tr>
<td>25.</td>
<td>Drying</td>
<td>120</td>
<td>100.00</td>
</tr>
</tbody>
</table>

It should be inferred from the table that cent per cent (100.00%) of the respondents adopted correct season for planting and hybrid. Nearly 82.50 per cent of the respondents adopted recommended seed rate in castor cultivation followed by 78.34 per cent of the respondents adopted recommended spacing. The reason for higher adoption might be due to simplicity in nature of technology and less cost involved in adopting those practices.

It is also seen that nearly half (50.83%) of the respondents adopted recommended fungicide treatment for castor cultivation, followed by 44.16 per cent of the respondents adopted bio-fertilizer treatment. It is also observed that cent per cent (100.00%) of the respondents adopted depth of sowing, number of seeds sown per hole and gap filling.

It is also seen that majority (87.50%) of the respondents adopted correct irrigation interval and only 17.50 per cent of the growers adopted drip irrigation for castor cultivation. Just above half (51.67%) of the respondents adopted recommended quantity of FYM/Compost application and 37.50 per cent of the growers adopted correct dose of fertilizers as Basal followed by two-fifth (40.00%) of the respondents adopted correct dose of fertilizers as top dressing.

In case of inter crops, 30.00 per cent of respondents adopted inter crops in castor cultivation and only 9.16 per cent of respondents adopted castor gold spray in castor cultivation. More than two-third (68.34%) of the respondents adopted recommended weed management practices in castor cultivation.

Just above one-third (35.00%) of the respondents used the recommended insecticide for the control of tobacco caterpillar followed by nearly one-third (32.50%) of the respondents adopted recommended control measure for the control of semi-looper.

It is also seen that just above one-fourth (26.67%) of the respondents adopted the recommended control measure for fruit borer and nearly one-fourth (22.50%) of the respondents used the recommended control measure for the control of fruit rot. A little
more than one-third (34.16%) of the respondents adopted the recommended control measure for wilt. Majority (88.34%) of the respondents adopted recommended physiological maturity before harvesting followed by 93.34 per cent of respondents adopted correct time of harvest and cent per cent (100.00%) of the respondents adopted optimum drying before packaging.

CONCLUSION

From the findings, it was noticed that most of the castor hybrid production technologies were perceived as medium to high level of adoption by Castor growers. Hence, training need to be organized to improve the knowledge of farmers on hybrid castor cultivation and extension methods like training, demonstration and field trip may organized to increase awareness, knowledge and in turn to improve the adoption of production technologies in castor cultivation.

REFERENCES

2. Gangaiah, B. Agronomy – Kharif crops Castor, Division of Agronomy, Indian Agricultural Research Institute, New Delhi – 110 012.